Learning Greedy Policies for the Easy-First Framework

Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth Mannem, Xiaoli Fern, Tom Dietterich, Prasad Tadepalli

Oregon State University

The Easy-First Framework: Example

A 4.2 magnitude earthquake struck near eastern Sonoma County.

A tremor struck in Sonoma County.

The Easy-First Framework: Example

A 4.2 magnitude earthquake struck near eastern Sonoma County.

A tremor struck in Sonoma County.

A 4.2 magnitude earthquake

eastern Sonoma County
A tremor

Sonoma County

1. Begin with every mention in its own cluster

The Easy-First Framework: Example

A 4.2 magnitude earthquake struck near eastern Sonoma County.

A tremor struck in Sonoma County.

A 4.2 magnitude earthquake

A tremor

eastern Sonoma County
Sonoma County

1. Begin with every mention in its own cluster
2. Evaluate all possible merges with a scoring function and select the highest scoring merge (easiest)

The Easy-First Framework: Example

A 4.2 magnitude earthquake struck near eastern Sonoma County.

A tremor struck in Sonoma County.

A 4.2 magnitude earthquake

eastern Sonoma County
Sonoma County

1. Begin with every mention in its own cluster
2. Evaluate all possible merges with a scoring function and select the highest scoring merge (easiest)
3. Repeat until stopping condition is met

Easy First Training

Learning Scoring Function

Possible goal: learn a scoring function such that: in every state ALL good áctions are ranked higher than all bad actions

Over-Constrained Goal

A better goal: learn a scoring function such that in every state ONE good action is ranked higher than all bad actions

Proposed Objective for Update

- Goal: find a linear function such that it ranks one good action higher than all bad actions
- This can be achieved by a set of constraints

$$
\begin{aligned}
& \max _{g \in G} w \cdot x_{g}>w \cdot x_{b}+1 \\
& \text { for all } b \in B
\end{aligned}
$$

- Our Objective:
- Use hinge loss to capture the constraints
- Regularization to avoid overly aggressive update

Optimization

- Majorization Minimization algorithm to find a local optimal solution.
- In each MM iteration:
- Let x_{g}^{*} be the current highest scoring good action
- Solve following convex objective (via subgradient descent)
$\underset{w}{\operatorname{argmin}} \frac{1}{|B|} \sum_{b \in B}\left(1-{\max w x_{g}}_{\substack{g \in G}}^{w \cdot x_{g}^{*}}\right.$

Contrast with Existing Methods

- Average-good vs. average-bad (AGAB)

- Best-good vs. best-bad (BGBB)

- Proposed method: Best-good vs. violated-bad (BGVB)

Experiment I: cross-document entity and event coref

Experiment II: within-doc Coref

Results on OntoNotes
$■$ BGBB ■R-BGBB ■ BGVB ■R-BGVB

Diagnostics

- Some training statistics on ACE 2004 corpus:

Approach	Total Steps	Mistakes	Recoveries	Percentage
RBGVB	50195	16228	4255	0.262

Diagnostics

- Some training statistics on ACE 2004 corpus:

Approach	Total Steps	Mistakes	Recoveries	Percentage
RBGVB	50195	16228	4255	$\mathbf{0 . 2 6 2}$
BGBB	50195	11625	4075	$\mathbf{0 . 3 5 1}$

BGBB corrects errors more aggressively than RBGVB. This is a strong evidence that overfitting does happen with BGBB.

Contributions

- We precisely represent the learning goal for Easy First as an optimization problem
- We develop an efficient Majorization Minimization algorithm to optimize the proposed objective
- Achieve highly competitive results against state-of-the-art for both within- and crossdocument coref

Clniversity (Diate

