USU Multi-Task Structured Prediction for Entity Analysis: ACML
Search Based Learning Algorithms 2017

Seoul, Korea
Chao Ma, tJanardhan Rao Doppa, Prasad Tadepalli, Hamed Shahbazi and Xiaoli Fern
Oregon State University, tWashington State University, USA

Oregon State

UNIVERSITY

Motivation & Problem ~ Multi-Task Structured Prediction Experimental Results
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» A NLP system usually solves multiple tasks; Experimental Setups

» Some of these tasks are highly inter-dependent.
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This is fairly important in MTSP when using inter-
task features, especially higher order features.

Conclusions
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1. Formulated the problem of multi-task structured
prediction (MTSP) for entity analysis.

2. Applied the search-based learning framework, where
structured SVM is employed for training and beam




