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Many NLP tasks process mentions of entities – things, 

people, organizations, etc. 

• Named Entity Recognition
• Coreference Resolution
• Entity Linking
• Semantic Role Labeling
• Entity Relation Extraction

……
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference:
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Typical (Single-Task) Structured Prediction:

Scoring 

function

Input Output
f : X, Y R y

f (x, y) = w · ϕ(x, y)

Single Task Structured Prediction

x y

Learning Inference

Feature Vector

y = argmax f (x, y)
y

^

Intractable in most cases

• Graphical models
• Structured Perceptron
• Structured SVM

……

• Belief Propagation
• Integer Linear Programming (ILP)
• Beam Search

……

Candidate Methods: Candidate Methods:

This Work



Structured SVM Learning with Search-based 
Inference



{                   }

Multi-Task Structured Prediction (MTSP):

models

Input

Output

f 1 : X    Y1

= w1 · ϕ1(x, y)

f 2 : X    Y2

= w2 · ϕ2(x, y’)

f 3 : X Y3

= w3 · ϕ3(x, y’’)

Intermediate 
or final outputs

y2

x

y1 y3

Multi-Task Structured Prediction

o How to exploit the interdependencies between tasks?

Intra-task Features



Introduce Inter-task Features:

models

Input

Output

f 1 : X    Y1

= w1 · ϕ1(x, y)

f 2 : X    Y2

= w2 · ϕ2(x, y’)

f 3 : X Y3

= w3 · ϕ3(x, y’’)

y2

x

y1 y3

Multi-Task Structured Prediction

Intra-task Features

Inter-task Features

ϕ(1,2)(x , y , y’) ϕ (2,3)(x , y’ , y” )

ϕ (1,3)(x , y , y”)



Pipeline Architecture
Learning k (= 3) independent models, one after another;

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2 w(2,3)w(1,3)

Define a order:  Task 1 → Task 2 → Task 3



Pipeline Architecture

Task 1:
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Use feature 
ϕ1 (x, y)

x

y2y1 y3
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SSVM Learner
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n
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d
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t
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Learning k (= 3) independent models, one after another;



Pipeline Architecture

Task 1:

Task 2:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature 
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
p

re
d

ic
t

w1

Use feature
ϕ2 (x,y),  ϕ(1,2) (x,y,y’)

y2y1 y3

SSVM Learner

w(1,2)w2

tr
ai

n
p

re
d

ic
t

Learning k (= 3) independent models, one after another;



Pipeline Architecture

Task 1:

Task 2:

Task 3:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature 
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
p

re
d

ic
t

w1

Use feature
ϕ2 (x,y),  ϕ(1,2) (x,y,y’)

y2y1 y3

SSVM Learner

w(1,2)w2

tr
ai

n
p

re
d

ic
t

Use feature 
ϕ3(x, y) ,  ϕ(1,3)(x,y,y”)

ϕ(2,3) (x,y’,y”)

y2y1 y3

SSVM Learner

tr
ai

n
p

re
d

ic
t

w3 w(2,3)w(1,3)

Learning k (= 3) independent models, one after another;



 The task performs better when it is placed last in order. 

 There is no ordering that allows the pipeline to reach peak performance 

on all the three tasks.

✓ Each group of bars represents one task. In each group, we show the 

accuracy when the task is placed at first (1st bar), or at last (2nd and 3rd bar).
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Pipeline Performance Depends on Task Order



Joint Architecture

Task 1 & 2 & 3:

Use all features 
ϕ1 (x,y), ϕ2 (x,y), ϕ3(x,y) ,

ϕ(1,2) (x,y,y’), ϕ(1,3)(x,y,y”) ,

ϕ(2,3) (x,y’,y”)

x

SSVM Learner

tr
ai

n
p

re
d

ic
t p

red
ict

w(1,2)w1 w3w2 w(2,3)w(1,3)

y2y1 y3

ϕ =  ϕ1 (x,y)ㅇϕ2 (x,y)ㅇϕ3(x,y)ㅇϕ(1,2)(x,y,y’)ㅇϕ(1,3)(x,y,y”)ㅇϕ(2,3) (x,y’,y”)

Vector concatenation

Big Problem: Huge branching factor for search



Pruning

Score-agnostic Pruning

Score-sensitive Pruning

A pruner is a classifier to prune the domain of each variable using state 

features.

Cost 
function

Training 
Data

• Can accelerate the training time;

• May or may not improve the testing accuracy;

Pruned 
Data

Pruner training & 
predicting

SSVM Learner

Cost 
function

Training 
Data

Pruner training & 
predicting

SSVM Learner

testing Testing
Results

Testing
Results

• Can improve the testing accuracy;

• No training speedup, but evaluation does speed up.  



Cyclic Architecture

Task 1 → Task 2 → Task 3

Connect the tail of pipeline to the head?

Pipeline architecture



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Unshared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict  initial outputs:



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Unshared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

w2

y1

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

w(1,2)

x y3y1

Use features 
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

w(2,3)

y2

Unshared-Weight-Cyclic Training



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

y3

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

x y3y1

Use features 
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

w2 w(1,2) w(2,3)

y2

x

y2

y1

Use features 
ϕ3(x,y),

ϕ(1,3)(x,y,y”),

ϕ(2,3) (x,y’,y”)

Unshared-Weight-Cyclic Training

Weights are 

independent



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

x

Shared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3y1

w(1,2)w1 w3w2 w(2,3)w(1,3)



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Shared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

w(1,2)w1 w3w2 w(2,3)w(1,3)



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

x y3y1

Use features 
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

y2

Shared-Weight-Cyclic Training

w(1,2)w1 w3w2 w(2,3)w(1,3)



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

x y3y1

Use features 
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

T
a
s
k
 2

 T
u

rn

y2

Shared-Weight-Cyclic Training

w(1,2)w1 w3w2 w(2,3)w(1,3)

y3
x

y2

y1

Use features 
ϕ3(x,y),

ϕ(1,3)(x,y,y”),

ϕ(2,3) (x,y’,y”)

Weights are shared



Experimental Setup

Datasets: ACE2005 TAC-KBP2015

Train/Dev/Test Train/Dev/Test

Wikipedia Freebase
(2015 dump)

338/144/117

(2014 dump)

Evaluation:

132/36/167

ACE-to-Wiki annotation

Coref.       NER     Linking Within.Coref Cross.Coref NER & Linking

Knowledge 
Base:

CoNLL CoNLL NERLC
MUC
BCube
CEAFe

CEAFm

Combined accuracy of 
NER and Linking

Hamming

Hamming

All metrics are accuracies (larger is better)

average



Results Joint Architecture Performance

Algms.
Coreference NER Link

Train 
time

MUC BCube CEAFe CoNLL Accu. Accu.
Berkeley 81.41 74.7 72.93 76.35 85.6 76.78 31min

a. Results of Joint Architecture without Pruning
STSP 80.28 73.26 71.58 75.04 82.24 75.36 9min

Joint w. 
Rand Init

80.23 73.79 72.03 75.35 82.20 76.99 48min

Joint w. 
Good init

82.18 76.57 74.00 77.58 85.71 78.77 34min

b. Results of Joint Architecture with Pruning
Score-

agnostic
81.10 75.79 74.33 77.07 85.63 78.71 16min

Score-
sensitive

82.81 75.77 74.96 77.85 87.18 80.28 37min

c. Results of Cyclic Architecture
Unshrd-

Wt-Cyclic
81.83 76.05 73.99 77.29 84.18 80.67 11min

Shared-
Wt-Cyclic

80.97 75.22 73.39 76.53 82.16 79.60 10min

Algm.

NER Link NERLC
Within. 
Coref

Cross. 
Coref

Train.

Accu. Accu. Accu. CoNLL CEAFm time
Rank-1st 87 - 73.7 - 80 -
Berkeley 88.9 74.8 72.8 82.98 80.8 6m29s

a. Results of Joint Architecture without Pruning
STSP 87.3 76.2 70.9 81.21 78.8 2m41s
Joint w. 
Rand. Ini

87.1 71.17 68.33 81.31 78.4 7m19s

Joint w.  
Good. Ini

89.72 76.98 74.43 82.8 81.3 6m11s

b. Results of Joint Architecture with Pruning
Score-
agnostic

89.54 76.84 74.31 82.99 81.4 4m15s

Score-
sensitive

89.33 77.68 74.63 83.17 81.3 9m2s

c. Results of Cyclic Architecture
Ushrd-
Wt-Cyc

89.57 77.68 74.6 82.08 80.5 3m52s

Shard-Wt-
Cyc

87.95 73.65 71.32 80.54 77.9 2m56s

ACE05 Test Set Performance TAC15 Test Set Performance

1. Joint-Good-Init > STSP

Interdependency, captured by inter-task features, does benefit the system. 

2. Joint-Good-Init > Joint-Rand-Init

Search-based inference for large structured prediction problems suffers from 

local optima and is mitigated by a good initialization. 

3. Search-based MTSP is competitive or better than the state-of-the-art system.



Results Joint Architecture Performance

Algms.
Coreference NER Link

Train 
time

MUC BCube CEAFe CoNLL Accu. Accu.
Berkeley 81.41 74.7 72.93 76.35 85.6 76.78 31min

a. Results of Joint Architecture without Pruning
STSP 80.28 73.26 71.58 75.04 82.24 75.36 9min

Joint w. 
Rand Init

80.23 73.79 72.03 75.35 82.20 76.99 48min

Joint w. 
Good init

82.18 76.57 74.00 77.58 85.71 78.77 34min

b. Results of Joint Architecture with Pruning
Score-

agnostic
81.10 75.79 74.33 77.07 85.63 78.71 16min

Score-
sensitive

82.81 75.77 74.96 77.85 87.18 80.28 37min

c. Results of Cyclic Architecture
Unshrd-

Wt-Cyclic
81.83 76.05 73.99 77.29 84.18 80.67 11min

Shared-
Wt-Cyclic

80.97 75.22 73.39 76.53 82.16 79.60 10min

Algm.

NER Link NERLC
Within. 
Coref

Cross. 
Coref

Train.

Accu. Accu. Accu. CoNLL CEAFm time
Rank-1st 87 - 73.7 - 80 -
Berkeley 88.9 74.8 72.8 82.98 80.8 6m29s

a. Results of Joint Architecture without Pruning
STSP 87.3 76.2 70.9 81.21 78.8 2m41s
Joint w. 
Rand. Ini

87.1 71.17 68.33 81.31 78.4 7m19s

Joint w.  
Good. Ini

89.72 76.98 74.43 82.8 81.3 6m11s

b. Results of Joint Architecture with Pruning
Score-
agnostic

89.54 76.84 74.31 82.99 81.4 4m15s

Score-
sensitive

89.33 77.68 74.63 83.17 81.3 9m2s

c. Results of Cyclic Architecture
Ushrd-
Wt-Cyc

89.57 77.68 74.6 82.08 80.5 3m52s

Shard-Wt-
Cyc

87.95 73.65 71.32 80.54 77.9 2m56s

ACE05 Test Set Performance TAC15 Test Set Performance

1. Joint-Good-Init > STSP

Interdependency, captured by inter-task features, does benefit the system. 

2. Joint-Good-Init > Joint-Rand-Init

Search-based inference for large structured prediction problems suffers from 

local optima and is mitigated by a good initialization. 

3. Search-based MTSP is competitive or better than the state-of-the-art system.

4. Score-sensitive pruning of joint MTSP performs the best and takes most time



Results

Algms.
Coreference NER Link

Train 
time

MUC BCube CEAFe CoNLL Accu. Accu.
Berkeley 81.41 74.7 72.93 76.35 85.6 76.78 31min

a. Results of Joint Architecture without Pruning
STSP 80.28 73.26 71.58 75.04 82.24 75.36 9min

Joint w. 
Rand Init

80.23 73.79 72.03 75.35 82.20 76.99 48min

Joint w. 
Good init

82.18 76.57 74.00 77.58 85.71 78.77 34min

b. Results of Joint Architecture with Pruning
Score-

agnostic
81.10 75.79 74.33 77.07 85.63 78.71 16min

Score-
sensitive

82.81 75.77 74.96 77.85 87.18 80.28 37min

c. Results of Cyclic Architecture
Unshard-
Wt-Cyclic

81.83 76.05 73.99 77.29 84.18 80.67 11min

Shared-
Wt-Cyclic

80.97 75.22 73.39 76.53 82.16 79.60 10min

Algm.

NER Link NERLC
Within. 
Coref

Cross. 
Coref

Train.

Accu. Accu. Accu. CoNLL CEAFm time
Rank-1st 87 - 73.7 - 80 -
Berkeley 88.9 74.8 72.8 82.98 80.8 6m29s

a. Results of Joint Architecture without Pruning
STSP 87.3 76.2 70.9 81.21 78.8 2m41s
Joint w. 
Rand. Ini

87.1 71.17 68.33 81.31 78.4 7m19s

Joint w.  
Good. Ini

89.72 76.98 74.43 82.8 81.3 6m11s

b. Results of Joint Architecture with Pruning
Score-
agnostic

89.54 76.84 74.31 82.99 81.4 4m15s

Score-
sensitive

89.33 77.68 74.63 83.17 81.3 9m2s

c. Results of Cyclic Architecture
Unshared
-Wt-Cyc

89.57 77.68 74.6 82.08 80.5 3m52s

Shared-
Wt-Cyc

87.95 73.65 71.32 80.54 77.9 2m56s

ACE05 Test Set Performance TAC15 Test Set Performance

Cyclic Architecture Performance

• Competitive accuracy, and much faster training

• Unshared weights perform better than shared weights



Summary

1. Search-based multi-task structured prediction outperforms prior work 

based on graphical models on all 3 entity analysis tasks.

2. Studied three learning and inference architectures: pipeline, cyclic, 

and joint, with trade-offs between accuracy and speed.

3. The joint architecture with score-sensitive pruning performs the best.

4. The cyclic architecture with unshared weights is competitive in 

accuracy and faster to train.



Thank You!


