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1 Coreference Resolution is the task of clustering a set of
mentions In the text such that all mentions in the same cluster refer
to the same entity.

“[Barack Obama] nominated " Barack Obama \( Hillary Clinton
[Hillary Clinton] as his [secretary of First Lad
state] on Monday. [He] chose [her] - e ~ 'rSH; ’
because [she] had foreign affair )
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experience as a former [First Lady].”

Coreference Output
Output Y

Extracted Mentions
Input X

O Learning: Given a set of input-output pairs for training, learn a
function F: X Y to make predictions on new inputs.

L Evaluation: against a non-negative loss | (x vy, y)<R* (6.0
BCubed).

Greedy Search Formulation

[0 Key Idea: Divide-and-conquer by learning two functions;
» A pruning function F,,,. to prune all the bad decisions based on

the specified pruning parameter b.
» A scoring function E,.,,. to select the best decision from the
remaining actions.
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Decision: a1 1s the best action for state s

[0 Representational Power

Proposition: Let F,.,,. and Fy,. be In the same function space. For all
learning problems, min &(F, pre) Fscore) =~ min

FSCOT‘B (Fprune FSCO’I"B)

Moreover there exist learning problems for which min &(E, pre, Fscore)

Fscore

can be arbitrarily worse than €(Eyruner Fscore)-

min
(F. prune»Fscore)

label feature vector

2. Scoring Function Learning
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‘ ‘ Generate ranking examples:
dl A3 a. | d, é . .
ranking a* at the first of b

Experiment Results

O Experiment Setups

® Datasets OntoNotes 5: Train/Dev/Test: 2802/343/345 documents.
® Base Rank-Learner LambdaMART implemented in RankLib.

® Feature Set Employ the same features as Easyfirst [Stoyanov et. al.,
2012] System, which used 90 mention-palir features; 49 entity-pair

features; and one NEW indicator feature.
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[ Coreference Resolution Results
OntoNotes 5.0 Test
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[0 Greedy Search processes each mention from left to right. Loss Decomposmon and Lea ring e | e | Eren | =men | @ilEE | sRes | Eam | omen | meE

Choose actions greedily according to a heuristic. - Only Scoring 67.98 54.42 5379 5873 8573 7438 7462 7824
“Processed” means an decision of that mention has been made. L Loss Decomposition HOTCoref 70.72 5858 55.61 61.63 -

Overall expected loss € equals the error due to pruning the target Berkeley 70.82 58.14 5527 61.41 87.46 76.63 76.40  80.16

L Search Space output (£,,ume), PIUS the error due to not selecting the best output UIUC 6948 5744 5307 6000 8480 7874 6875  77.43

« State S: Partial clustering of all mentions up to current mention. Stanford 6471 5226 4932 5543 8364 7481 6698 7514

* Action: MERGE(m, C): merge mention m into the cluster C.
NEW(m): start a new cluster that only contains m.
left | > right
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Processed mentions and their clusters

\ State

Each depth will have a corresponding processing mention;
The learned heuristic will pick the best action for that mention.

Current processing mention

within the pruned space (E5core)-
E=E& +&

prune score|prune
O Pruning and Scoring Function Learning
Stage 1: Forune = arg 111111]:pru_neer

Stage 2:

Eprune <
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[0 Reductions to Rank-learning

1. Pruning Function Learning

As,) -

True best action

label feature vector

flat s ] é(s,.a ) I relevant
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example: ranking a : Precision
in top b \Clm e é(‘gr?al())
[}’(prune)]

* Prune-and-Score performs better than Only-Scoring. This shows the

benefit of learning with pruning rules. Other coreference resolution

systems can also benefit from our pruning idea.
* Prune-and-Score Is comparable or better than the state-of-the-art.

O Performance with Different Pruning Parameter b

Behavior of Prune-and-Score depends on the pruning parameter b:
0 o0+

b: >

Aggressive Pruning < >

Conservative Pruning
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Pruning Parameter b
» Performance shows Prune-and-Score Is robust to the pruning parameter b.




