
Problem Setup

emnlp2014
Doha, Qatar

Prune-and-Score: Learning for Greedy Coreference Resolution
Chao Ma, Janardhan Rao Doppa, J. Walker Orr, Prashanth Mannem

Xiaoli Fern, Tom Dietterich and Prasad Tadepalli

Greedy Search Formulation

Experiment Results

 Greedy Search processes each mention from left to right.

Choose actions greedily according to a heuristic.

“Processed” means an decision of that mention has been made.

 Search Space
• State S: Partial clustering of all mentions up to current mention.

• Action: MERGE(m, C): merge mention m into the cluster C.

NEW(m): start a new cluster that only contains m.

Each depth will have a corresponding processing mention;

The learned heuristic will pick the best action for that mention.

 Key Idea: Divide-and-conquer by learning two functions;

 A pruning function 𝐹𝑝𝑟𝑢𝑛𝑒 to prune all the bad decisions based on

the specified pruning parameter 𝑏.

 A scoring function 𝐹𝑠𝑐𝑜𝑟𝑒 to select the best decision from the

remaining actions.

 Representational Power

Loss Decomposition and Learning

 Coreference Resolution is the task of clustering a set of

mentions in the text such that all mentions in the same cluster refer

to the same entity.

 Learning: Given a set of input-output pairs for training, learn a

function F : X Y to make predictions on new inputs.

 Evaluation: against a non-negative loss (e.g.

BCubed).

Input Output ŷ

“[Barack Obama] nominated
[Hillary Clinton] as his [secretary of
state] on Monday. [He] chose [her]
because [she] had foreign affair
experience as a former [First Lady].”

x

Barack Obama
He

Hillary Clinton
First Lady

Her
SheSecretary of state

Extracted Mentions Coreference Output  Experiment Setups

 Datasets OntoNotes 5: Train/Dev/Test: 2802/343/345 documents.

 Base Rank-Learner LambdaMART implemented in RankLib.

 Feature Set Employ the same features as Easyfirst [Stoyanov et. al.,

2012] System, which used 90 mention-pair features; 49 entity-pair

features; and one NEW indicator feature.

Prune & Score Framework

 Loss Decomposition

Overall expected loss 𝜺 equals the error due to pruning the target

output (𝜺𝒑𝒓𝒖𝒏𝒆), plus the error due to not selecting the best output

within the pruned space (𝜺𝒔𝒄𝒐𝒓𝒆).

 Pruning and Scoring Function Learning

 Reductions to Rank-learning

prunescoreprune | 

Conditioned on

Stage 1:.

Stage 2:

1. Pruning Function Learning

RyyxL)ˆ,,(

left right

At depth 7

Pruning: Keeping top b.

Scoring: Picking the best.

Rank-learner

Optimizing
Precision@b

F(prune)

True best action

Generate ranking
example: ranking a*
in top b

Proposition: Let 𝐹𝑝𝑟𝑢𝑛𝑒 and 𝐹𝑠𝑐𝑜𝑟𝑒 be in the same function space. For all

learning problems, min
𝐹𝑠𝑐𝑜𝑟𝑒

𝜀(𝐹𝑠𝑐𝑜𝑟𝑒 , 𝐹𝑠𝑐𝑜𝑟𝑒) ≥ min
(𝐹𝑝𝑟𝑢𝑛𝑒,𝐹𝑠𝑐𝑜𝑟𝑒)

𝜀(𝐹𝑝𝑟𝑢𝑛𝑒 , 𝐹𝑠𝑐𝑜𝑟𝑒).

Moreover there exist learning problems for which min
𝐹𝑠𝑐𝑜𝑟𝑒

𝜀(𝐹𝑠𝑐𝑜𝑟𝑒 , 𝐹𝑠𝑐𝑜𝑟𝑒)

can be arbitrarily worse than min
(𝐹𝑝𝑟𝑢𝑛𝑒,𝐹𝑠𝑐𝑜𝑟𝑒)

𝜀(𝐹𝑝𝑟𝑢𝑛𝑒 , 𝐹𝑠𝑐𝑜𝑟𝑒).

 Coreference Resolution Results

 Performance with Different Pruning Parameter b

b:
0 ∞+

Aggressive Pruning Conservative Pruning

Behavior of Prune-and-Score depends on the pruning parameter b:

• Prune-and-Score performs better than Only-Scoring. This shows the

benefit of learning with pruning rules. Other coreference resolution

systems can also benefit from our pruning idea.

• Prune-and-Score is comparable or better than the state-of-the-art.

58
59
60
61
62
63
64
65

0 4 8 12 16 20 24 28 32

C
o

N
L

L
-F

1
Pruning Parameter b

OntoNotes 5 Dev. Set

• Performance shows Prune-and-Score is robust to the pruning parameter b.

OntoNotes 5.0 Test

System Mentions Gold Mentions

F-1 score MUC BCube CEAF_e CoNLL MUC BCube CEAF_e CoNLL

Prune-Score 72.84 57.94 53.91 61.56 86.96 76.49 77.33 80.26

Only Scoring 67.98 54.42 53.79 58.73 85.73 74.38 74.62 78.24

HOTCoref 70.72 58.58 55.61 61.63 - - - -

Berkeley 70.82 58.14 55.27 61.41 87.46 76.63 76.40 80.16

UIUC 69.48 57.44 53.07 60.00 84.80 78.74 68.75 77.43

Stanford 64.71 52.26 49.32 55.43 83.64 74.81 66.98 75.14

2. Scoring Function Learning

F(score)

Rank-learner

Optimizing
Precision@1

Apply learned 𝑭𝒑𝒓𝒖𝒏𝒆
Here b = 4

F(prune)

Generate ranking examples:
ranking a* at the first of b

1
a

2
a

3
a*

ta
5

a6
a

7
a

8
a

10
a

Current processing mention Processed mentions and their clusters

NEW(m7)

State

Actions

