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Abstract
In a structured prediction problem, we need to learn
a predictor that can produce a structured output
given a structured input (e.g., part-of-speech tag-
ging). The key learning and inference challenge is
due to the exponential size of the structured output
space. This paper makes four contributions towards
the goal of a computationally-efficient inference
and training approach for structured prediction that
allows to employ complex models and to optimize
for non-decomposable loss functions. First, we de-
fine a simple class of randomized greedy search
(RGS) based inference procedures that leverage
classification algorithms for simple outputs. Sec-
ond, we develop a RGS specific learning approach
for amortized inference that can quickly produce
high-quality outputs for a given set of structured
inputs. Third, we plug our amortized RGS in-
ference solver inside the inner loop of parameter-
learning algorithms (e.g., structured SVM) to im-
prove the speed of training. Fourth, we perform
extensive experiments on diverse structured pre-
diction tasks. Results show that our proposed ap-
proach is competitive or better than many state-of-
the-art approaches in spite of its simplicity.

1 Introduction
Structured prediction (SP) tasks arise in several domains in-
cluding NLP, computer vision, and computational biology. In
a structured prediction problem, the goal is to learn a mapping
from structured inputs to structured outputs. For example, in
semantic labeling of images, the structured input is an image
and the structured output is a labeling of the image regions.
The main learning and inference challenge in structured pre-
diction is due to the size of the structured output space, which
is exponential in the size of the input.

A standard approach to structured prediction is to learn
a scoring function F (x, y) to score a candidate structured

† First two authors contributed equally.

output y given a structured input x [Lafferty et al., 2001;
Tsochantaridis et al., 2004]. Given such a scoring function
and a new input x, the output computation then involves find-
ing the maximum scoring output (aka Argmax inference prob-
lem). Unfortunately, exactly solving the argmax problem is
often intractable and efficient solutions exist only for sim-
ple representations over input-output pairs (e.g., small fac-
tor sizes). However, many real-world tasks require complex
representations for making accurate predictions, which sig-
nificantly increase the time-complexity of inference. Since
inference algorithms are used in the inner loop of structured
learning to induce weights of F (x, y), it increases the train-
ing time to perform learning on large-scale data. Also, there
is no general approach to perform learning to optimize non-
decomposable loss functions (e.g., F1 loss): prior methods re-
quire decomposability to support “loss augmented inference”.

This paper has two main motivations. First, there is lit-
tle work on using advances in machine learning to suc-
cessfully improve the speed of solving inference problems
in structured prediction literature [Srikumar et al., 2012;
Kundu et al., 2013; Chang et al., 2015b; Namaki et al., 2017;
Pan and Srikumar, 2018]. Our goal is to bridge the general
area of speedup learning [Fern, 2010] with structured predic-
tion for potential cross-fertilization of ideas and new applica-
tions [Namaki et al., 2017]. By viewing inference procedures
as computational search processes will allow us to study
generic approaches to address speedup learning problems
arising in structured prediction. Second, randomized greedy
search (RGS) based inference method referred as RGS(0) —
starting solutions of RGS are selected randomly — is shown
to be empirically successful for couple of NLP tasks [Zhang
et al., 2014; 2015] and theoretical results based on Gibbs
generalization error characterize its efficacy [Honorio and
Jaakkola, 2016]. However, there are two main weaknesses
of RGS(0): a) RGS(0) will not perform well on SP tasks with
large structured outputs (large number of output variables)
and large number of candidate labels; and b) RGS(0) requires
a large number of random restarts to uncover near-optimal
structured outputs. This results in high inference time. Since
inference is repeatedly used in the inner loop of SP algorithms
for learning weights of scoring function, training time is also
high. Indeed, our experiments demonstrate these weaknesses



of RGS(0). We address the above mentioned challenges us-
ing a simple, yet very effective approach based on RGS based
inference. This paper makes the following contributions:

• Define a simple class of RGS based inference proce-
dures referred as RGS(α) that leverages classification al-
gorithms for simple outputs. The parameter α ∈ [0, 1]
determines the fraction of output variables assigned by a
learned classifier to generate starting solutions.

• Develop a RGS specific learning approach for amortized
inference that can quickly produce high-quality outputs
for a given set of structured inputs. The key idea is to
learn an evaluation function to select good starting solu-
tions to improve the accuracy of search.

• Employ amortized RGS inference inside the inner loop
of parameter-learning algorithms (e.g., structured SVM)
to improve the speed of training.

• Perform comprehensive experiments on ten diverse SP
tasks including sequence labeling, multi-label classifica-
tion, co-reference resolution, and image segmentation.
Results show that our approach is competitive or bet-
ter than many state-of-the-art approaches in spite of its
simplicity. The code and data is publicly available on
github: https://github.com/nkg114mc/rgs-struct

2 Problem Setup
A structured prediction problem specifies a space of struc-
tured inputs X , a space of structured outputs Y , and a non-
negative loss function L : X × Y × Y 7→ <+ such that
L(x, y′, y∗) is the loss associated with labeling a particular
input x by output y′ when the true output is y∗. We are pro-
vided with a training set of input-output pairs {(x, y∗)} drawn
from an unknown target distributionD. The goal is to return a
function from structured inputs to outputs whose predictions
have low expected loss w.r.t distribution D.

Without loss of generality, let each structured output y ∈ Y
be represented as d discrete variables v1, v2, · · · , vd and each
variable vi can take candidate values from a set C(vi). For
part-of-speech (POS) tagging, vi stands for POS tag of a word
andC(vi) is the list of all POS tags. Since our algorithms will
be learning functions over input-output pairs, as is standard in
structured prediction, we assume the availability of a feature
function Φ : X × Y 7→ <m that computes an m dimensional
feature vector for any pair. We assume a linear scoring func-
tion F (x, y) = w · Φ(x, y) to score a candidate input-output
pair, where w ∈ <m stands for weights/parameters. Our goal
is to learn w such that for each training example (x, y∗), the
score of the correct output is higher than score of any other
candidate output y, i.e., F (x, y∗) > F (x, y).

3 RGS(α) Inference Procedure
We define a simple class of RGS inference procedures re-
ferred as RGS(α) that leverage IID classifiers.

Inference Problem. Given a structured input x and a pa-
rameterized function F (x, y) to score candidate outputs, the
problem of finding the highest scoring candidate output is
called “Argmax” inference problem: ŷ = arg maxy F (x, y).

We need to solve inference problems during both training and
testing. Therefore, we need an efficient and accurate solver.

Algorithm 1 RGS(α) Inference Solver
Input: x: structured input, F (x, y): scoring function, h: learned
IID classifier, 1− α ∈ [0, 1]: randomness in starting output, Rmax:
maximum number of restarts
1: Initialization: ybest ← random output
2: for each restart r = 1 to Rmax do
3: ystart ← assignα fraction of output variables using classifier

h and remaining variables randomly
4: (TRAJr, yend)← Greedy((x, ystart) , S, F (x, y))
5: if F (x, yend) > F (x, ybest) then
6: ybest ← yend // Update the best scoring output
7: end if
8: end for
9: return ybest, the predicted structured output

RGS(α) Inference Solver. We employ randomized greedy
search (RGS) based solvers that perform search in complete
structured output spaces, where each search state s is of the
form (x, y). Given a starting state (x, ystart), greedy search
traverses a path through the search space, at each point select-
ing the best successor state according to the scoring function
F (x, y) until reaching a local optima (x, yend). We denote
the greedy search trajectory by TRAJ. RGS performs greedy
search from multiple starting states and selects the best lo-
cal optima ybest. The time-complexity of RGS inference is
O(R · d · k · T ), where R is the number of restarts, d is
the number of output variables, k is the maximum number
of candidate values for output variables, and T is the average
number of search steps to reach local optima. The quality of
predicted output ybest depends critically on the starting states
and the number of restarts. RGS(α) is a variant of RGS whose
starting states are selected using a parameter α ∈ [0, 1] and a
learned IID classifier h. Given a structured input x, we select
a starting state output as follows: assign α fraction of output
variables using classifier h and remaining variables uniformly
at randomly. RGS(0) is the instantiation employed in prior
work [Zhang et al., 2014].

IID Classifier h. It is a multi-class classifier that varies
from one SP task to another. The classifier h predicts the label
for each node / output variable in the structured output inde-
pendently, i.e., ignores the label dependencies based on the
node features (unary potentials). For example, in sequence
labeling, h predicts each output token independently based
on the features of input token. We employed off-the-shelf
logistic regression implementation to learn the IID classifier
from the structured input-output training examples {(x, y∗)}
using unary features in all our experiments.

Successor Function S. Given a state s = (x, y), we gen-
erate a successor state by changing the value of exactly
one output variable in y with one of the other candidate
values. Therefore, the number of successors is equal to∑d
i=1 (|C(vi)| − 1).

Effect of α. The value of α controls the trade-off between
exploitation and exploration. Specifically, the following two
properties are relevant: 1) minimum depth at which target



outputs y∗ can be located if we fully expand the search tree
rooted at the initial state via successor function S (referred as
target depth); and 2) diversity of starting outputs. Consider
the following two extreme cases. If α = 1, the expected value
of the target depth is proportional to the error of classifier h
and is lowest. We can view this as biasing the search toward
the output produced by classifier h resulting in no diversity
in the starting states. If α = 0, the expected target depth
value is proportional to the error of a random classifier and is
highest. In this case, diversity in starting states is very high.
For other values of α between 0 and 1, the resulting trade-off
lies in between these two extremes. α is a hyper-parameter.
The best value of α depends on hardness and scale of the
structured prediction task. For example, it may be beneficial
to have non-zero α value when the no. of output variables d is
large and our experiments corroborate this hypothesis. In our
experiments, we select the best α based on validation data.

Advantages of RGS Inference. Some of the main advan-
tages of search-based inference methods including RGS are
as follows: a) They can easily handle global constraints
to perform inference over valid outputs. We just need
to prune all successor states that violate the global con-
straints. b) We can employ any higher-order features as part
of Φ(x, y) with negligible computational overhead. c) Al-
lows us to optimize non-decomposable loss functions (e.g.,
F1 loss) due to the naturally ability of RGS to solve loss-
augmented inference problem with arbitrary loss function L:
ŷ = arg maxy F (x, y)+L(x, y, y∗). Indeed, we demonstrate
these advantages of RGS(α) inference in our experiments.

4 Learning for Amortized RGS Inference
In this section, we describe a learning approach to improve
the speed of solving inference problems using RGS inference
solver (aka amortized RGS inference).

Motivation. We need to solve inference problems for mul-
tiple inputs during both training and testing. The naive ap-
proach is to run inference solver independently on each input
example. It is conceivable that we can learn useful knowl-
edge while solving inference problems on past input exam-
ples to improve the speed of inference on future examples
[Fern, 2010; Srikumar et al., 2012]. For example, we can im-
prove the speed of RGS(α) inference solver if we can select
better starting states. Therefore, we learn evaluation func-
tions that can estimate the promise of a candidate output as a
starting point for greedy search [Boyan and Moore, 2001].

Amortized RGS Inference Problem. Given a set of struc-
tured inputs Dx =

{
xi
}

and a scoring function F (x, y)
to score candidate outputs, the goal is to reduce the time-
complexity of finding accurate structured outputs for all in-
puts in Dx using the RGS(α) inference solver [Srikumar et
al., 2012].

Learning Approach. The key idea is to learn an evalua-
tion function E(x, y) = θ · Φ(x, y) from past searches to se-
lect good starting states for greedy search [Boyan and Moore,
2001]. Suppose (x, ystart) is a candidate starting state and
(x, yend) is the local optima state obtained by performing

greedy search guided by F (x, y). We want to learn the pa-
rameters θ such that E(x, ystart) = F (x, yend). If we can
learn an accurate E(x, y), then we can select good starting
states using E.

Algorithm 2 Amortized RGS Inference
Input: Dx =

{
xi
}n

i=1
: structured inputs, F (x, y): learned scoring

function, h: IID classifier, 1 − α ∈ [0, 1]: randomness in starting
output, θ: old weights of evaluation functionE
1: for each input example xi ∈ Dx do
2: yistart ← assignα fraction of output variables using classifier

h and remaining variables randomly
3: ŷi ← yistart
4: end for
5: repeat
6: Initialization: set of regression examplesR← ∅
7: for each input example xi ∈ Dx do
8: // Greedy search guided by F
9: (TRAJi, yiend)← Greedy

((
x, yistart

)
, F (x, y)

)
10: if F (x, yiend) > F (x, ŷi) then
11: ŷi ← yiend // Update the best scoring output
12: end if
13: end for
14: // Generate training data to improve E
15: for each output y on TRAJi do
16: if E(xi, y) 6= F (xi, yiend) then
17: Add the following regression example to R: Φ(xi, y)

as input and F (xi, yiend) as output
18: end if
19: end for
20: // Improve E using new training data
21: E = ONLINE-REGRESSION-LEARNER(R, θ)
22: for each input example xi ∈ Dx do
23: // Search guided by E for finding good starting solutions
24: (TRAJi, yireset)← Greedy

((
xi, yiend

)
, E(xi, y)

)
25: if yireset = yiend then
26: yistart ← assign α fraction of output variables using

classifier h and remaining variables randomly
27: else
28: yistart ← yireset
29: end if
30: end for
31: until convergence
32: return Dy , the set with ŷi for each input xi ∈ Dx and θ, the

new weights of evaluation function E

Our iterative learning approach for amortized RGS infer-
ence is shown in Algorithm 2 and illustrated in Fig 1. We
initialize the starting output yistart for each input xi ∈ D. We
repeat the following four main steps until convergence (pre-
dicted outputs don’t change in two consecutive iterations).
Before each iteration, we reset the set of regression examples:
R = ∅. Step 1: For each input xi ∈ Dx, we perform greedy
search from the corresponding yistart to get local optima out-
put yiend. Subsequently, the best scoring output ŷi is updated
for each input in D. (lines 7-13) Step 2: Collect regression
examples to improve E from greedy search trajectories for
all inputs in D. (lines 15-19) Step 3: Update the parameters
of evaluation function E by passing regression examples R
to an online regression learner. Step 4: Select good starting
state for each input xi ∈ Dx using the updated E (lines 22-



30). We perform greedy search guided by E from yiend to get
the local optima output yireset. If yiend and yireset are same,
picking yireset as a starting solution won’t help in improving
ŷi and we pick a new starting solution as done in RGS(α).
Otherwise, we pick yireset as the next starting state.

Online Regression Learner. We employ a simple online
learner based on gradient descent to learn E: learning rate
η = 0.1 and five online learning iterations. More sophisti-
cated approaches including the AdaGrad algorithm can also
be used for this purpose.

Search for good starting 
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Figure 1: High-level overview of amortized RGS inference.

Connection to Imitation Learning. We can view the
above learning approach as an instance of imitation learning
(IL) [Daumé et al., 2009; Ross et al., 2011]. In traditional
IL, expert demonstrations are provided as training data (e.g.,
demonstrations of a human expert driving a car) In our set-
ting, the greedy search trajectories from step 1 correspond to
expert demonstrations and evaluation function E correspond
to the learned policy. We can view steps 2 and 3 as an in-
stantiation of the IL algorithm DAgger [Ross et al., 2011]
with a small change. We do not aggregate data from all the
previous iterations to induce policy via supervised learning
as time is a first-order citizen in the amortized inference pro-
cess. Therefore, we perform online updates to the policy pa-
rameters incrementally based on the new stream of feedback
data from each iteration. The convergence theory for DAgger
algorithm only depends on the use of a no-regret learning al-
gorithm such as follow-the-regularized-leader (FTRL) [Ross
et al., 2011]. So convergence results will hold by using an
online no-regret learning algorithm.

Usage of Amortized RGS Inference. The amortized RGS
inference approach can be employed in two scenarios:

1) After learning F (x, y). In this case, F (x, y) is fixed
and parameters of E(x, y) get updated as needed while pro-
cessing new inputs at the test-time. We initialize the parame-
ters of E(x, y) before testing by calling Algorithm 2 with all
structured input-output training examples.

2) During learning F (x, y). In this case, F (x, y) keeps
changing over different structured learning iterations and the
parameters of E(x, y) get updated as needed while perform-
ing inference with respect to the current F (x, y).

Remark 1. We learn the evaluation function on training ex-
amples conditioned on the scoring function F (x, y) learned
via structured learning. Subsequently, we update the weights
of E(x, y) as needed while processing inputs at the test-time.

5 Structured Learning with Amortized RGS
Standard approaches for structured learning (SL) including
CRFs, structured SVMs, and structured perceptron repeat-
edly call the inference solver on one or more training inputs to
learn the weights of the scoring function F (x, y). Therefore,
we can employ amortized RGS (A-RGS) inference solver to
improve the training speed. To optimize a given loss function
L, we need to solve the loss-augmented inference problem
for each training input x: ŷ = arg maxy F (x, y) + L(x, y).
We can employ amortized RGS by passing F (x, y) +L(x, y)
to score outputs instead of F (x, y). Algorithm 3 shows a
generic template for structured learning that can be instanti-
ated to get existing algorithms. By varying |D′|, we can get
online (|D′| = 1), mini-batch (|D′| < |D|), and full batch
(|D′| = |D|) training methods. In this work, we experiment
with structured SVM training using dual co-ordinate descent
(DCD) optimization approach noting that any other SL ap-
proach can be used. We have two hyper-parameters for learn-
ing the weights of F (x, y) with A-RGS inference solver: C
for structured SVM and α for A-RGS(α).

Algorithm 3 Structured Learning with Amortized RGS
Input: D = {x, y∗}, structured input-output training examples, L:
loss function, h: learned IID classifier, 1 − α ∈ [0, 1]: randomness
in starting output
1: Initialize the weights of scoring function F and evaluation func-

tion E: w ← 0 and θ ← 0
2: repeat
3: Select a batch D′ ⊆ D for loss-augmented inference
4: // Call Amortized-RGS inference solver
5: (D′y, θ)← A-RGS(D′, F (x, y) + L(x, y), h, 1− α, θ)
6: // Training to improve F using D′y
7: Update weights w using (aggregate) data from D′y
8: until convergence
9: return w, weights of the learned scoring function F

RGS/A-RGS falls under the category of under-generating
inference methods (i.e., explores a subset of the structured
output space) [Finley and Joachims, 2008]. Therefore, The-
orem 3 from [Chang et al., 2015b] is also applicable for our
case with the DCD optimization algorithm. In short, it only
requires exact inference every τ successive inference calls to
learn the correct weights for F (x, y).

6 Experiments and Results
Structured Prediction Tasks and Datasets. We evaluate
our approach on diverse tasks including sequence labeling,
multi-label classification, coreference resolution, and image
segmentation. We employ five sequence labeling datasets.
1) Handwriting Recognition: We consider two variants
[Daumé et al., 2009]: one fold for training and remain-
ing nine folds for testing in HW-Small, and vice-versa in
HW-Large. 2) NETtalk Stress: The task is to assign one



of the 5 stress labels to each letter of a word. 3) NETtalk
Phoneme: Similar to stress task except the goal is to as-
sign one of the 51 phoneme labels. The training/testing split
of NETtalk is 1000/1000. 4) Protein: The aim is to pre-
dict secondary structure of amino-acid residues. There train-
ing/testing split is 111/17. 5) Twitter POS tagging: 25 POS
labels dataset consisting of 1000-tweet OCT27TRAIN, 327-
tweet OCT27DEV, 547-tweet DAILY547 as test set [Tu and
Gimpel, 2018]. We employ three multi-label datasets, where
the goal is to predict a binary vector corresponding to the rele-
vant labels. 6) Yeast: There are 14 labels and training/testing
split of 1500/917. 7) Bibtex: There are 159 labels and train-
ing/testing split of 4800/2515. 8) Bookmarks: There are
208 labels and training/testing split of 60000/27856. We em-
ploy one coreference resolution dataset, where the goal is to
cluster a set of textual mentions. 9) ACE2005: This is a
corpus of English documents with 50 to 300 gold mentions
in each document. We follow the standard training/testing
split of 338/117 [Durrett and Klein, 2014]. We employ one
image segmentation dataset, where the goal is to label each
pixel in an image with its semantic label. 10) MSRC: This
dataset contains 591 images and 21 labels. We employ stan-
dard training/testing split of 276/256, and each image was
pre-segmented into around 700 patches with SLIC algorithm.

Experimental Setup. We employ Illinois-SL library
for learning the weights of F via structured SVM approach.
We employ a validation set to tune the hyper-parameters: C
for Structured SVM and α ∈ [0, 1] for RGS inference. For
MSRC and ACE2005, we use the standard development set
and employ 20 percent of training data as validation set for
other datasets. For image segmentation, we employed the
unary features from [Lucchi et al., 2011]. For coreference
resolution, we extended the Berkeley system [Durrett and
Klein, 2014] by formulating coreference resolution as pro-
ducing a left-linking tree [Ma et al., 2014]. We only per-
form experiments with gold mentions. We consider features
Φ(x, y) consisting of unary and pairwise features (first-order)
for both F and E for the simplest configuration. All exper-
iments were run on a machine with dual processor 6 Core
2.67Ghz Intel Xeon CPU and 48GB memory. To account for
randomness, we repeat each experiment 10 times, and report
the mean and variance of metrics.

Evaluation Metrics. For sequence labeling task, we em-
ploy Hamming accuracy. For multi-label classification task,
we use three popular metrics: Hamming accuracy = ‖y∩y

∗‖1
|y| ;

Example-F1 = 2‖y∩y∗‖1
‖y‖1+‖y∗‖1 ; and Example accuracy = ‖y∩y

∗‖1
‖y∪y∗‖1 ,

where y and y∗ are the predicted and ground truth outputs re-
spectively. For coreference resolution task, we employ stan-
dard metrics including MUC, B3, CEAFe, and CoNLL score.
We also consider mention-wise Hamming accuracy, which is
defined as the fraction of mentions with correct links. For
image segmentation task, we measure the pixel-wise classi-
fication accuracy: a) Class Average: average over the accu-
racies for each class label; and b) Global: global Hamming
accuracy regardless of the class labels.

Error Analysis of RGS and A-RGS Inference. We report
two different accuracy metrics over testing examples for di-

agnostic purposes. Suppose Y ′(x) be the set of all candi-
date outputs uncovered by search for a given input x. We
compute the predicted output ŷ for these accuracy metrics as
follows: a) Prediction: ŷ = arg maxy∈Y ′(x) F (x, y) (best
scoring output uncovered by search); and b) Generation:
ŷ = arg miny∈Y ′(x) L(x, y, y∗) (best loss output uncovered
by search). Note that generation accuracy is greater than or
equal to prediction accuracy. Generation accuracy is associ-
ated with the effectiveness of RGS/A-RGS inference in un-
covering high-quality candidate structured outputs.

6.1 Results of RGS Inference with α = 0

In prior work [Zhang et al., 2014; 2015], RGS(0) was tested
on two NLP tasks minimally. So we robustly tested RGS(0)
along different dimensions — number of restarts, complexity
of joint features Φ(x, y), loss functions — and also performed
error analysis. Due to space constraints, we present the de-
tailed results in appendix. Summary of results: a) Accuracy
improves with more number of restarts and saturates at 100
restarts. Variance over accuracy decreases with more restarts
improving the stability of results; b) Accuracy improves with
higher-order features at negligible computational overhead;
and c) Can successfully optimize arbitrary loss functions, and
best results are obtained when training and testing is done
with the same loss function.

Table 1 shows the best results obtained with RGS(0) via 50
restarts and highest-order features: pairs, triples, and quadru-
ples of labels for sequence labeling; pairs of labels for multi-
label classification; features over entity and entity-mention
pairs for coreference resolution; and unary and global fea-
tures in the form of normalized histogram for number of
super-pixels with different labels for image segmentation.

a. Sequence Labeling
HW-Small HW-Large Phoneme Stress TwtPos Protein

Cascades 89.18 97.84 82.59 80.49 - -
HC-Search 89.96 97.79 85.71 83.68 - -

CRF 80.03 86.89 78.91 78.52 - 62.44
SEARN 82.12 90.58 77.26 76.15 - -
BiLSTM 83.18 92.50 77.98 76.55 88.8 61.26

BiLSTM-CRF 88.78 95.76 81.03 80.14 89.2 62.79
Seq2Seq(Beam=1) 83.38 93.65 78.82 79.62 89.1 62.90
Seq2Seq(Beam=5) 86.92 96.72 82.19 80.96 89.9 63.34

Seq2Seq(Beam=20) 89.38 98.95 82.31 81.50 90.2 63.81
RGS(0) 92.32 97.83 82.28 80.84 89.9 62.75
RGS(α) 92.56 97.96 82.45 81.00 90.2 65.20

BiLSTM-RGS 91.83 98.15 82.55 81.10 90.1 64.19

b. Multi-label Classification
Yeast Bibtex Bookmarks

Hamm ExmF1 ExAcc Hamm ExmF1 ExAcc Hamm ExmF1 ExAcc
MLS 80.72 63.78 51.23 - - - - - -

SPEN(E2E) 79.6 63.8 52.0 98.5 42.1 36.8 99.1 35.6 29.3
DVN 78.9 63.8 51.9 98.5 44.7 37.2 99.1 37.1 30.1
InfNet 79.4 63.6 51.7 98.1 42.2 37.1 99.2 37.6 30.9

RGS(0) 80.04 63.90 52.18 98.12 44.11 36.65 99.13 36.88 31.46
RGS(α) 80.10 63.90 52.90 98.62 44.86 36.78 99.15 36.98 31.58

c. Coreference Resolution (ACE 2005)
MUC BCube CEAFe CoNLL

Berkeley 81.41 74.7 72.93 76.35
RGS(0) 80.07 74.13 71.25 75.15
RGS(α) 82.18 76.57 74.01 77.58

d. Image Segmentation (MSRC)
Global Average

ICCV2011 85 77
CRF-CNN 91.1 90.5

RGS(0) 81.27 73.14
RGS(α) 85.29 78.92

RGS(α)-CNN 91.53 90.28

Table 1: Comparison with the state-of-the-art.
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Figure 2: Prediction and generation accuracy of RGS(α) on development set for different values of α.

6.2 Results of RGS Inference with non-zero α
We present results of RGS with non-zero α values for train-
ing and testing. A non-zero α will provide a better starting
output when compared to α = 0. This can be potentially
beneficial for harder tasks and/or when the number of out-
put variables is very large. For this experiment, we employ
50 restarts, highest-order features, and optimize Hamming
loss except for Yeast (F1 loss). We select the best α from
{0, 0.1, 0.2, · · · , 1.0} via performance on the validation data.

RGS(0) vs. RGS with Best α
Table 1 shows the results for RGS with best α. Results are
better with best α and accuracy improvement is higher for
image segmentation and coreference resolutions, which are
harder tasks with large number of output variables. Figure 2
shows the the effect of varying α on the validation data. Re-
call that α allows us to trade-off diversity (reflected via gen-
eration accuracy) and quality of the starting output for greedy
search. For tasks with small structured outputs (Yeast and
HW-Large), RGS(α) inference is likely to be more sensitive
to the diversity of initial outputs as the main bottleneck is gen-
eration accuracy. However, the quality of the initial output is
important for tasks with large structured outputs (MSRC and
ACE2005). As α increases, generation accuracy starts de-
creasing after reaching the peak, but prediction accuracy does
not decrease proportionally as improvement in the quality of
starting output balances some of this negative effect.

Comparison to State-of-the-Art.
We compare the accuracy results of RGS with best α to state-
of-the-art (SOTA) approaches including CRFs [Lafferty et al.,
2001], SEARN [Daumé et al., 2009], CASCADES [Weiss
and Taskar, 2010], HC-Search [Doppa et al., 2014a], and re-
cent deep learning approaches. Table 1 shows the prediction
accuracies of different algorithms (‘-’ indicates we were not
able to generate results for those cases).

For sequence labeling problems, we report the best pub-
lished SOTA results [Doppa et al., 2014a]. Performance of
RGS(α) approach is comparable or better than SOTA for
handwriting recognition and slightly lower than HC-Search
for Stress and Phoneme datasets (HC-Search employs the
high-quality limited discrepancy search space [Doppa et al.,
2014b]). We also performed experiments using BiLSTM,
BiLSTM-CRF, and Seq2Seq with beam search1 [Wiseman

1Our seq2seq implementation is derived from https://github.com/
JayParks/tf-seq2seq.

and Rush, 2016] as baselines. BiLSTM-CRF corresponds to
using the learned unary features from Bi-LSTM and adding
pairwise potentials to learn a CRF model. BiLSTM-RGS cor-
responds to using the learned unary features from Bi-LSTM
with RGS(α). We report the accuracy with different decod-
ing beam sizes in {1, 5, 20, 50}. The performance of Seq2Seq
saturates at beam size 20 for all datasets. We find that RGS
based approach consistently performs better or comparable to
these baselines.

For multi-label classification, we compare to multi-label
search (MLS) [Doppa et al., 2014c], deep value networks
(DVN) [Gygli et al., 2017], end-to-end structured prediction
energy networks (SPEN) [Belanger et al., 2017], and SPEN
with inference network (InfNet) [Tu and Gimpel, 2018]. RGS
approach is competitive or slightly better when compared to
DVN, SPEN(E2E) and SPEN(InfNet) (all of them learn a
non-linear function).

For image segmentation, we compare to CRF-CNN [Liu et
al., 2015]. Performance of RGS approach with unary features
from [Lucchi et al., 2011] is lower than CRF-CNN. However,
when we employ CNN based unary features (RGS(α)-CNN),
performance is comparable to SOTA. For coreference reso-
lution task, we compare to the Berkeley system [Durrett and
Klein, 2014]. RGS approach performs better on all metrics.

6.3 Results of A-RGS(α) for Test-Time Inference
We present results comparing amortized RGS with baseline
RGS for test-time inference. We employ the best α value
from previous experiments for all the below results.

Time vs. Accuracy Curve. We perform this experiment on
entire testing set (say |D|). The baseline RGS is run with 50
restarts. Figure 3 shows the time vs. accuracy curves. We plot
the point corresponding to the cumulative time and accuracy
of RGS over |D| examples. For amortized RGS, we plot the
anytime curve based on the results over different iterations.
We make two observations. First, amortized RGS quickly
uncovers high-quality outputs that are very close to final pre-
dictions from RGS. Second, given the same time-bound as
RGS, accuracy of amortized RGS is same (HW-Large) or bet-
ter (Yeast, ACE2005, MSRC) than RGS.

Fine-grained Analysis via Histogram of Required
Restarts. To understand the speedup comparison between
A-RGS and RGS, we plot the histogram of proportion of
input examples as a function of the required restarts to
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Figure 3: Time vs. accuracy curves for amortized RGS and RGS.

uncover the predicted output when they are run for a fixed
number of restarts (set to 20 for this experiment).

Suppose for an input example x, the best scoring output ac-
cording toF (x, y) was found in kth iteration, then we say that
the required restarts of RGS/A-RGS for input x is kx. Small
values of kx indicate faster inference (i.e., higher speedup).
We compute the required restarts value kx for each testing
input x and plot the proportion of testing inputs for different
candidate values of required restarts. Figure 4 shows the his-
tograms comparing RGS and A-RGS. Results show that with
A-RGS more input examples have relatively smaller required
restarts value when compared to RGS. This phenomenon is
pronounced and clear for both MSRC and ACE2005 (harder
tasks). Table 2 shows the average value of required restarts
over the entire testing set for different tasks. A-RGS has sig-
nificantly lower value when compared to RGS resulting in
large speedup improvements.

Name Yeast-F1 HW-Large MSRC ACE05
RGS 2.050±0.016 2.182±0.301 9.343±0.869 5.359±0.713

A-RGS 1.824±0.017 1.874±0.398 5.175±0.834 3.239±0.382

Table 2: Average required restarts of RGS/A-RGS inference.

Inference Time. We measure the raw inference time with
RGS/A-RGS over the entire testing set and compare with in-
ference in DVN [Gygli et al., 2017] and SPEN(E2E) [Be-
langer et al., 2017] wherever possible. We employ the public
implementations of DVN and SPEN(E2E), which were read-
ily usable for the multi-label tasks. Table 3 shows the infer-
ence time results. A-RGS is 3 to 5 times faster than the base-
line RGS approach. The speedup factor for A-RGS is higher
for tasks with large structured outputs, where local optima
challenge is significant and each iteration of greedy search is
computationally expensive. A-RGS is better than DVN and
SPEN(E2E) on Yeast, but SPEN(E2E) performs significantly
better than both A-RGS and DVN on Bibtex and Bookmarks.
We do not fully understand the reasons for this behavior and
a thorough investigation is part of our immediate future work.

6.4 Results for Structured Learning with ARGS
We present results comparing structured learning (SL) with
amortized RGS (Algorithm 3) and baseline RGS referred to
as DCD(RGS) and DCD(A-RGS) in terms of training time
and prediction accuracy. We keep the setup similar to above
experiments. We train structured SVM with entire training set

Testing Time Results (milli seconds)
Name Yeast Bibtex Bookmarks HWLarge MSRC ACE05

SPEN(E2E) 1274 5791 63073 - - -
DVN 5504 18086 211448 - - -
RGS 444 69890 288058 17323 9451 282864

A-RGS 48 20925 98921 4812 2294 55355

Table 3: Inference time results (milli seconds).

Training Time Results (minutes)
Name Yeast Bibtex Bkmrks HWLrg MSRC ACE05

SPEN(E2E) 19 114 237 - - -
DVN 4 20 204 - - -

DCD(RGS) 9 95 392 71 115 171
DCD(A-RGS) 5 32 319 44 27 39

Table 4: Training time results (minutes).

as batch D′, which is the standard configuration employed in
practice. We define the training speedup factor of A-RGS as
TRGS/TARGS , where TARGS and TRGS stand for training
time using A-RGS and RGS inference solvers respectively.
Results for raw training time, accuracy, and speedup factor of
A-RGS when compared to RGS are shown in Table 5. We
make two observations. First, training time with amortized
RGS is significantly less when compared to training with
RGS and accuracies are almost same. Second, speedup factor
τ is large for harder tasks (ACE2005 and MSRC).

DCD(RGS) DCD(A-RGS) Speedup
Datasets Time(min.) Acc. Time(min.) Acc. factor
Yeast-F1 17±0.71 63.35±1.61E-6 10±0.83 63.20±2.97E-6 1.69±9.40E-3

HW-Large 91±1.03 97.79±9.01E-4 32±1.16 97.51±3.13E-4 2.82±1.61E-3
ACE2005 179±8.83 77.58±7.85E-4 44±6.35 77.32±1.26E-3 4.01±1.57E-1

MSRC 279±10.3 83.47±6.06E-3 89±8.51 84.02±1.84E-3 3.13±4.28E-2

Table 5: Results of training with DCD(RGS) and DCD(A-RGS).

We also compare the raw training time of SL via DCD opti-
mization using RGS/A-RGS inference solvers — DCD(RGS)
and DCD(A-RGS) — with both DVN and SPEN(E2E) when-
ever possible. Table 4 shows the training time results.
DVN and SPEN(E2E) perform better on Bibtex and Book-
marks, whereas DCD(A-RGS) perform comparably or better
on Yeast. We investigated the reasons for this behavior by
profiling the DCD based structured learning algorithm with
A-RGS. We found that on an average a large fraction (∼89%)
of the training time was spent on updating the dual weights
and only a small fraction (∼11%) on performing inference.
We did not account for the pre-training time for SPEN in
our report training time results. SPEN(E2E) employs a gra-
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Figure 4: Histograms of percentage of examples for different values of required restarts.

dient based inference in the relaxed continuous space, whose
strength is speed. However, it has two weaknesses: a) Can not
handle global constraints to search over valid outputs; and b)
Prone to overfitting. It may be a fruitful research direction to
combine the best of both gradient-based inference and RGS
inference methods.

7 Related Work
There are many approaches to solve structured prediction
tasks with varying strengths and weaknesses. They include
generalization of standard classification approaches such as
CRFs [Lafferty et al., 2001], structured SVM [Tsochantaridis
et al., 2004], structured perceptron [Collins, 2002], and their
integration with deep learning (SPEN [Belanger et al., 2017]
and DVN [Gygli et al., 2017]); search-based approaches that
learn different forms of search control knowledge such as
greedy policies (SEARN [Daumé et al., 2009], DAgger [Ross
et al., 2011], LOLS [Chang et al., 2015a], and variants [Xie et
al., 2015]), heuristic functions (LaSO and its variants [Daumé
and Marcu, 2005; Xu et al., 2009; Huang et al., 2012]),
heuristic and cost functions (HC-Search [Doppa et al., 2014a;
Lam et al., 2015]), and coarse-to-fine knowledge (Cascades
[Weiss and Taskar, 2010]).

Our work builds on the recent success of RGS based infer-
ence on couple of NLP tasks [Zhang et al., 2014; 2015] and
associated theory [Honorio and Jaakkola, 2016]. We studied
a generalized RGS inference solver — RGS(α) — that lever-
ages IID classifiers towards the goal of improving RGS. We
also provided a learning approach to enable amortized RGS
inference. Iterated conditional modes (ICM) inference algo-
rithm [Pan and Srikumar, 2018] has some similarity to RGS.
In ICM, in each local search step, only the candidate labels of
a single output variable are considered, whereas labels of all
output variables are considered in RGS. The principle behind
our amortized RGS approach can be applied for ICM also.

Our amortized RGS inference method is very closely re-
lated to algorithms for amortized inference using integer

linear programming (ILP) solvers [Srikumar et al., 2012;
Chang et al., 2015b]. The key distinction is in the abstraction
that allows for amortization. In our case, we view inference as
a computational search process and learn generalized search
control knowledge to improve the speed of reasoning. By
adopting this viewpoint, we can treat ILP inference as a white
box (i.e., branch and bound search) to consider alternate algo-
rithms to achieve amortized inference [He et al., 2014]. Our
overall amortized inference based learning approach can be
seen as an instantiation of HC-Search [Doppa et al., 2014a]
for randomized greedy search. Evaluation function E and
scoring function F correspond to H and C respectively, but
they are learned using different methods. Our work is also re-
lated to speedup learning (SL) [Fern, 2010] and can be seen as
an instance of inter-problem SL. One of our primary motiva-
tions of this paper is to bridge the two areas of speedup learn-
ing and structured prediction for cross-fertilization of ideas.
In fact, our amortized RGS approach builds on the ideas be-
hind the STAGE algorithm from SL literature.

8 Summary and Future Work
We studied a randomized greedy search (RGS) based ap-
proach for structured prediction that leverages classifiers for
simple outputs. We developed learning methods to improve
the speed of making high-quality predictions using RGS. Ex-
perimental results show that in spite of its simplicity, our
overall approach is very effective in terms of accuracy and
speed of inference/training. Future work includes extend-
ing the RGS framework to multi-task structured prediction
problems [Ma et al., 2017], and to support learning in weak-
supervision setting.
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