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Motivation

Structured Prediction problems are very common

 Natural language processing

 Computer vision

 Computational biology

 Planning

 Social networks

 ….



3

NLP Examples: POS Tagging and Parsing 

POS Tagging

Parsing

𝑥 = “The cat ran” 𝑦 = <article> <noun> <verb>

“Red figures on the screen 
indicated falling stocks” 

𝒙
𝒚
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Computer Vision: Examples

Handwriting Recognition

Scene Labeling

s t r u c t u r e d
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Common Theme

POS tagging, parsing, scene labeling… 

 Inputs and outputs are highly structured

Studied under a sub-field of machine learning called 
“Structured Prediction”

Generalization of standard classification

Exponential no. of classes (e.g., all POS tag sequences)

Key challenge for inference and learning: large size of 
structured output spaces
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Cost Function Learning Approaches

Generalization of traditional ML approaches to structured 
outputs

 SVMs  ⇒ Structured SVM  [Tsochantaridis et al., 2004]

 Logistic Regression ⇒ Conditional Random Fields [Lafferty et al., 2001]

 Perceptron  ⇒ Structured Perceptron  [Collins 2002]
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Cost Function Learning: Approaches

Most algorithms learn parameters of linear models

𝜙 𝑥, 𝑦 is  n-dim feature vector over input-output pairs

w is n-dim parameter vector

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)
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Key challenge: “Argmin” Inference

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

Exponential 

size of output 

space !!
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Key challenge: “Argmin” Inference

Time complexity of inference depends on the 
dependency structure of features 𝜙(𝑥, 𝑦)

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)
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Key challenge: “Argmin” Inference

Time complexity of inference depends on the 
dependency structure of features 𝜙(𝑥, 𝑦)

 NP-Hard in general 

 Efficient inference algorithms exist only for simple features

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)
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Cost Function Learning: Generic Template

repeat

For every training example (𝑥, 𝑦)

Inference: ො𝑦 = arg𝑚𝑖𝑛𝑦∈𝑌 𝑤 ∙ 𝜑 𝑥, 𝑦

If mistake 𝑦 ≠ ො𝑦,   

Learning: online or batch weight update

until convergence or max. iterations

Training goal:

Find weights 𝑤 s.t

For each input 𝑥, the cost of the correct structured output 
𝑦 is lower than all wrong structured outputs 

Exponential 

size of output 

space !!
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Amortized Inference and Learning: 

Motivation

We need to solve many inference problems during both 
training and testing

Computationally expensive

Can we improve the speed of solving new inference 
problems based on past problem-solving experience? 

Yes, amortized Inference! 

Highly related to ``speedup learning’’ [Fern, 2010]
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Amortized Inference and Learning:

Generic Approach

Abstract out inference solver as a computational search 
process

Learn search-control knowledge to improve the efficiency 
of search

Example #1: ILP inference as branch-and-bound search  
and learn heuristics/policies

Example #2: Learn search control knowledge for 
randomized greedy search based inference (Our focus) 
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Inference Solver:

Randomized Greedy Search (RGS)

Start from a random structured output

Perform greedy search guided by scoring function 𝑭(𝒙, 𝒚)

Stop after reaching local optima: 𝑦𝑙𝑜𝑐𝑎𝑙

Accuracy of inference depends critically on the starting 
structured outputs

Solution: Multiple restarts and select the best local optima
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Inference Solver: RGS

Start from a random structured output 

Perform greedy search guided by scoring function 𝑭(𝒙, 𝒚)

Stop after reaching local optima: 𝑦𝑙𝑜𝑐𝑎𝑙

Potential drawbacks

 Requires large number of restarts to achieve high accuracy

 May not work well for large outputs (# of output variables)

Repeat 𝑹𝒎𝒂𝒙 times

Prediction ො𝑦: best local optima
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Inference Solver: RGS(𝜶)

𝛼 fraction of the output variables are initialized with a 
learned IID classifier 

Perform greedy search guided by scoring function 𝑭(𝒙, 𝒚)

Stop after reaching local optima: 𝑦𝑙𝑜𝑐𝑎𝑙

RGS(0) is a special case [Zhang et al., 2014; Zhang et al., 2015]

ALL output variables are initialized randomly

Repeat 𝑹𝒎𝒂𝒙 times

Prediction ො𝑦: best local optima
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Inference Solver: RGS(𝜶)

𝛼 controls the trade-off between 

 diversity of starting outputs 

 the minimum depth at which target outputs can be located

𝑦∗

𝑇

RGS(0)

𝑦∗

1 − 𝛼 . 𝑇
RGS(𝛼)

• Large 𝛼 small target depth

• Can help for tasks with large outputs 

(e.g., coreference resolution)
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Amortized RGS Inference: The Problem

Given a set of structured inputs 𝑫𝒙 and scoring function 
𝑭(𝒙, 𝒚) to score candidate outputs

Reduce the number of iterations of RGS(𝛼) to uncover 
high-scoring structured outputs
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Amortized RGS Inference: Solution

Given a set of structured inputs 𝑫𝒙 and scoring function 
𝑭(𝒙, 𝒚) to score candidate outputs

Reduce the number of iterations of RGS(𝛼) to uncover 
high-scoring structured outputs

Learn search control knowledge to select good starting 
states [Boyan and Moore, 2000]
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Amortized RGS Inference: Solution

 Key Idea: Learn evaluation function E(𝑥,𝑦) to select good starting 
states to improve the accuracy of greedy search guided by 𝐹(𝑥,𝑦) 
[Boyan and Moore, 2000]
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Structured Learning w/ Amortized RGS

Plug amortized RGS inference solver in the inner loop for 
learning weights of scoring function 𝑭(𝒙, 𝒚)

𝑬(𝒙, 𝒚) adapts to the changes in 𝐹(𝑥, 𝑦)
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Benchmark Domains

Sequence Labeling

 Handwriting recognition (HW-Small and HW-Large) [Taskar et al., 2003]

 NET-Talk (Stress and Phoneme prediction) [Sejnowski and Rosenberg, 1987]

 Protein secondary structure prediction [Dietterich et al., 2008]

 Twitter POS tagging [Tu and Gimpel, 2008]

Multi-Label Classification

 3 datasets: Yeast, Bibtex, and Bookmarks 

Coreference Resolution

 ACE2005 dataset (~ 50 to 300 mentions) [Durrett and Klein, 2014]

Semantic Segmentation of Images

 MSRC dataset (~ 700 super-pixels per image)
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Evaluation Metrics: Task Loss Functions

Sequence Labeling

 Hamming accuracy

Multi-Label Classification

 Hamming accuracy, Example-F1, Example accuracy

Coreference Resolution

MUC, B-Cube, CEAF, and CNNL Score

 Image segmentation

Pixel-wise classification accuracy
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Baseline Methods

Conditional Random Fields (CRFs)

SEARN

Cascades

HC-Search

Bi-LSTM (w./w.o. CRFs)

Seq2Seq with Beam Search Optimization

Structured SVM w/ RGS(0) inference with 50 restarts

Structured SVM w/ RGS(𝛼) inference
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RGS(0) vs. RGS(𝛼)

a. Sequence Labeling
HW-Small HW-Large Phoneme Stress TwitterPos Protein

RGS(0) 92.32 97.83 82.28 80.84 89.9 62.75

RGS(α) 92.56 97.96 82.45 81.00 90.2 65.20

b. Multi-label Classification

Yeast Bibtex Bookmarks

Hamming ExmpF1 ExmpAcc Hamming ExmpF1 ExmpAcc Hamming ExmpF1 ExmpAcc

RGS(0) 80.04 63.90 52.18 98.12 44.11 36.65 99.13 36.88 31.46

RGS(α) 80.10 63.90 52.90 98.62 44.86 36.78 99.15 36.98 31.58

c. Coreference Resolution (ACE 2005)

MUC BCube CEAFe CoNLL

RGS(0) 80.07 74.13 71.25 75.15

RGS(α) 82.18 76.57 74.01 77.58

d. Image Segmentation (MSRC)

Global Average

RGS(0) 81.27 73.14

RGS(α) 85.29 78.92

Algorithms Datasets Metrics

✓ RGS with best 𝛼 gives better accuracy than RGS(0) for tasks with 
large structured outputs.
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RGS(𝛼) vs. State-of-the-art

✓ RGS(𝛼) is competitive or better than many state-of-the-art methods.

a. Sequence Labeling
HW-Small HW-Large Phoneme Stress TwitterPos Protein

Cascades 89.18 97.84 82.59 80.49 - -

HC-Search 89.96 97.79 85.71 83.68 - -

CRF 80.03 86.89 78.91 78.52 - 62.44

SEARN 82.12 90.58 77.26 76.15 - -

BiLSTM 83.18 92.50 77.98 76.55 88.8 61.26

BiLSTM-CRF 88.78 95.76 81.03 80.14 89.2 62.79

Seq2Seq(Beam=1) 83.38 93.65 78.82 79.62 89.1 62.90

Seq2Seq(Beam=20) 89.38 98.95 82.31 81.5 90.2 63.81

RGS(α) 92.56 97.96 82.45 81.00 90.2 65.20

*Note: BiLSTM-CRF is the CRF model with BiLSTM hidden states as 
unary features.
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RGS(𝛼) vs. State-of-the-art

c. Coreference Resolution (ACE 2005)
MUC BCube CEAFe CoNLL

Berkeley 81.41 74.70 72.93 76.35

RGS(α) 82.18 76.57 74.01 77.58

b. Multi-label Classification
Yeast Bibtex Bookmarks

Hamming ExmpF1 ExmpAcc Hamming ExmpF1 ExmpAcc Hamming ExmpF1 ExmpAcc

SPEN(E2E) 79.6 63.8 52.0 98.5 42.1 36.8 99.1 35.6 29.3

DVN 78.9 63.8 51.9 98.5 44.7 37.2 99.1 37.1 30.1

InfNet 79.4 63.6 51.7 98.1 42.2 37.1 99.2 37.6 30.9

RGS(α) 80.10 63.90 52.90 98.62 44.86 36.78 99.15 36.98 31.58

d. Image Segmentation (MSRC)
Global Average

ICCV2011 85 77

CRF-CNN 91.1 90.5

RGS(α) 85.29 78.92

RGS(α)-CNN* 91.53 90.28

✓ RGS(𝛼) is competitive or better than many state-of-the-art methods.

*Note: RGS(α)-CNN is the RGS(α) with 7th layer AlexNet output  as 
unary features. 
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Test-time Inference:

Amortized RGS vs. RGS

Testing Time (milli seconds)
Bibtex Bookmarks HWLarge MSRC ACE05

SPEN(E2E) 5791 63073 - - -

DVN 18086 211448 - - -

RGS 69890 288058 17323 9451 282864

A-RGS 20925 98921 4812 2294 55355

✓ A-RGS is 3 to 5 times faster than the RGS approach. 

✓ The speedup factor for A-RGS is higher for tasks with large 
structured outputs.
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Training Results:

Amortized RGS vs. RGS  

Training Time (minutes)
Yeast Bibtex Bookmarks HWLarge MSRC ACE05

SPEN(E2E) 19 114 237 - - -

DVN 4 20 204 - - -

DCD(RGS) 9 95 392 71 115 171

DCD(A-RGS) 5 32 319 44 27 39

✓ DCD(A-RGS) training takes shorter time than DCD(A-RGS) 

✓ DVN and SPEN(E2E) perform better on Bibtex and Bookmarks, 
whereas DCD(A-RGS) perform comparably or better on Yeast. 
Most time (~89%) was consumed on updating the dual weights.



30

Questions ?


