
1

Randomized Greedy Search for
Structured Prediction: Amortized

Inference and Learning

Chao Ma1, Reza Chowdhuri2, Aryan Deshwal2, Rakibul Islam2,
Jana Doppa2, Dan Roth3

1 Oregon State University 2 Washington State University

3 University of Pennsylvania

2

Motivation

Structured Prediction problems are very common

 Natural language processing

 Computer vision

 Computational biology

 Planning

 Social networks

 ….

3

NLP Examples: POS Tagging and Parsing

POS Tagging

Parsing

𝑥 = “The cat ran” 𝑦 = <article> <noun> <verb>

“Red figures on the screen
indicated falling stocks”

𝒙
𝒚

4

Computer Vision: Examples

Handwriting Recognition

Scene Labeling

s t r u c t u r e d

5

Common Theme

POS tagging, parsing, scene labeling…

 Inputs and outputs are highly structured

Studied under a sub-field of machine learning called
“Structured Prediction”

Generalization of standard classification

Exponential no. of classes (e.g., all POS tag sequences)

Key challenge for inference and learning: large size of
structured output spaces

6

Cost Function Learning Approaches

Generalization of traditional ML approaches to structured
outputs

 SVMs ⇒ Structured SVM [Tsochantaridis et al., 2004]

 Logistic Regression ⇒ Conditional Random Fields [Lafferty et al., 2001]

 Perceptron ⇒ Structured Perceptron [Collins 2002]

7

Cost Function Learning: Approaches

Most algorithms learn parameters of linear models

𝜙 𝑥, 𝑦 is n-dim feature vector over input-output pairs

w is n-dim parameter vector

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

8

Key challenge: “Argmin” Inference

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

Exponential

size of output

space !!

9

Key challenge: “Argmin” Inference

Time complexity of inference depends on the
dependency structure of features 𝜙(𝑥, 𝑦)

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

10

Key challenge: “Argmin” Inference

Time complexity of inference depends on the
dependency structure of features 𝜙(𝑥, 𝑦)

 NP-Hard in general

 Efficient inference algorithms exist only for simple features

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

11

Cost Function Learning: Generic Template

repeat

For every training example (𝑥, 𝑦)

Inference: ො𝑦 = arg𝑚𝑖𝑛𝑦∈𝑌 𝑤 ∙ 𝜑 𝑥, 𝑦

If mistake 𝑦 ≠ ො𝑦,

Learning: online or batch weight update

until convergence or max. iterations

Training goal:

Find weights 𝑤 s.t

For each input 𝑥, the cost of the correct structured output
𝑦 is lower than all wrong structured outputs

Exponential

size of output

space !!

12

Amortized Inference and Learning:

Motivation

We need to solve many inference problems during both
training and testing

Computationally expensive

Can we improve the speed of solving new inference
problems based on past problem-solving experience?

Yes, amortized Inference!

Highly related to ``speedup learning’’ [Fern, 2010]

13

Amortized Inference and Learning:

Generic Approach

Abstract out inference solver as a computational search
process

Learn search-control knowledge to improve the efficiency
of search

Example #1: ILP inference as branch-and-bound search
and learn heuristics/policies

Example #2: Learn search control knowledge for
randomized greedy search based inference (Our focus)

14

Inference Solver:

Randomized Greedy Search (RGS)

Start from a random structured output

Perform greedy search guided by scoring function 𝑭(𝒙, 𝒚)

Stop after reaching local optima: 𝑦𝑙𝑜𝑐𝑎𝑙

Accuracy of inference depends critically on the starting
structured outputs

Solution: Multiple restarts and select the best local optima

15

Inference Solver: RGS

Start from a random structured output

Perform greedy search guided by scoring function 𝑭(𝒙, 𝒚)

Stop after reaching local optima: 𝑦𝑙𝑜𝑐𝑎𝑙

Potential drawbacks

 Requires large number of restarts to achieve high accuracy

 May not work well for large outputs (# of output variables)

Repeat 𝑹𝒎𝒂𝒙 times

Prediction ො𝑦: best local optima

16

Inference Solver: RGS(𝜶)

𝛼 fraction of the output variables are initialized with a
learned IID classifier

Perform greedy search guided by scoring function 𝑭(𝒙, 𝒚)

Stop after reaching local optima: 𝑦𝑙𝑜𝑐𝑎𝑙

RGS(0) is a special case [Zhang et al., 2014; Zhang et al., 2015]

ALL output variables are initialized randomly

Repeat 𝑹𝒎𝒂𝒙 times

Prediction ො𝑦: best local optima

17

Inference Solver: RGS(𝜶)

𝛼 controls the trade-off between

 diversity of starting outputs

 the minimum depth at which target outputs can be located

𝑦∗

𝑇

RGS(0)

𝑦∗

1 − 𝛼 . 𝑇
RGS(𝛼)

• Large 𝛼 small target depth

• Can help for tasks with large outputs

(e.g., coreference resolution)

18

Amortized RGS Inference: The Problem

Given a set of structured inputs 𝑫𝒙 and scoring function
𝑭(𝒙, 𝒚) to score candidate outputs

Reduce the number of iterations of RGS(𝛼) to uncover
high-scoring structured outputs

19

Amortized RGS Inference: Solution

Given a set of structured inputs 𝑫𝒙 and scoring function
𝑭(𝒙, 𝒚) to score candidate outputs

Reduce the number of iterations of RGS(𝛼) to uncover
high-scoring structured outputs

Learn search control knowledge to select good starting
states [Boyan and Moore, 2000]

20

Amortized RGS Inference: Solution

 Key Idea: Learn evaluation function E(𝑥,𝑦) to select good starting
states to improve the accuracy of greedy search guided by 𝐹(𝑥,𝑦)
[Boyan and Moore, 2000]

21

Structured Learning w/ Amortized RGS

Plug amortized RGS inference solver in the inner loop for
learning weights of scoring function 𝑭(𝒙, 𝒚)

𝑬(𝒙, 𝒚) adapts to the changes in 𝐹(𝑥, 𝑦)

22

Benchmark Domains

Sequence Labeling

 Handwriting recognition (HW-Small and HW-Large) [Taskar et al., 2003]

 NET-Talk (Stress and Phoneme prediction) [Sejnowski and Rosenberg, 1987]

 Protein secondary structure prediction [Dietterich et al., 2008]

 Twitter POS tagging [Tu and Gimpel, 2008]

Multi-Label Classification

 3 datasets: Yeast, Bibtex, and Bookmarks

Coreference Resolution

 ACE2005 dataset (~ 50 to 300 mentions) [Durrett and Klein, 2014]

Semantic Segmentation of Images

 MSRC dataset (~ 700 super-pixels per image)

23

Evaluation Metrics: Task Loss Functions

Sequence Labeling

 Hamming accuracy

Multi-Label Classification

 Hamming accuracy, Example-F1, Example accuracy

Coreference Resolution

MUC, B-Cube, CEAF, and CNNL Score

 Image segmentation

Pixel-wise classification accuracy

24

Baseline Methods

Conditional Random Fields (CRFs)

SEARN

Cascades

HC-Search

Bi-LSTM (w./w.o. CRFs)

Seq2Seq with Beam Search Optimization

Structured SVM w/ RGS(0) inference with 50 restarts

Structured SVM w/ RGS(𝛼) inference

25

RGS(0) vs. RGS(𝛼)

a. Sequence Labeling
HW-Small HW-Large Phoneme Stress TwitterPos Protein

RGS(0) 92.32 97.83 82.28 80.84 89.9 62.75

RGS(α) 92.56 97.96 82.45 81.00 90.2 65.20

b. Multi-label Classification

Yeast Bibtex Bookmarks

Hamming ExmpF1 ExmpAcc Hamming ExmpF1 ExmpAcc Hamming ExmpF1 ExmpAcc

RGS(0) 80.04 63.90 52.18 98.12 44.11 36.65 99.13 36.88 31.46

RGS(α) 80.10 63.90 52.90 98.62 44.86 36.78 99.15 36.98 31.58

c. Coreference Resolution (ACE 2005)

MUC BCube CEAFe CoNLL

RGS(0) 80.07 74.13 71.25 75.15

RGS(α) 82.18 76.57 74.01 77.58

d. Image Segmentation (MSRC)

Global Average

RGS(0) 81.27 73.14

RGS(α) 85.29 78.92

Algorithms Datasets Metrics

✓ RGS with best 𝛼 gives better accuracy than RGS(0) for tasks with
large structured outputs.

26

RGS(𝛼) vs. State-of-the-art

✓ RGS(𝛼) is competitive or better than many state-of-the-art methods.

a. Sequence Labeling
HW-Small HW-Large Phoneme Stress TwitterPos Protein

Cascades 89.18 97.84 82.59 80.49 - -

HC-Search 89.96 97.79 85.71 83.68 - -

CRF 80.03 86.89 78.91 78.52 - 62.44

SEARN 82.12 90.58 77.26 76.15 - -

BiLSTM 83.18 92.50 77.98 76.55 88.8 61.26

BiLSTM-CRF 88.78 95.76 81.03 80.14 89.2 62.79

Seq2Seq(Beam=1) 83.38 93.65 78.82 79.62 89.1 62.90

Seq2Seq(Beam=20) 89.38 98.95 82.31 81.5 90.2 63.81

RGS(α) 92.56 97.96 82.45 81.00 90.2 65.20

*Note: BiLSTM-CRF is the CRF model with BiLSTM hidden states as
unary features.

27

RGS(𝛼) vs. State-of-the-art

c. Coreference Resolution (ACE 2005)
MUC BCube CEAFe CoNLL

Berkeley 81.41 74.70 72.93 76.35

RGS(α) 82.18 76.57 74.01 77.58

b. Multi-label Classification
Yeast Bibtex Bookmarks

Hamming ExmpF1 ExmpAcc Hamming ExmpF1 ExmpAcc Hamming ExmpF1 ExmpAcc

SPEN(E2E) 79.6 63.8 52.0 98.5 42.1 36.8 99.1 35.6 29.3

DVN 78.9 63.8 51.9 98.5 44.7 37.2 99.1 37.1 30.1

InfNet 79.4 63.6 51.7 98.1 42.2 37.1 99.2 37.6 30.9

RGS(α) 80.10 63.90 52.90 98.62 44.86 36.78 99.15 36.98 31.58

d. Image Segmentation (MSRC)
Global Average

ICCV2011 85 77

CRF-CNN 91.1 90.5

RGS(α) 85.29 78.92

RGS(α)-CNN* 91.53 90.28

✓ RGS(𝛼) is competitive or better than many state-of-the-art methods.

*Note: RGS(α)-CNN is the RGS(α) with 7th layer AlexNet output as
unary features.

28

Test-time Inference:

Amortized RGS vs. RGS

Testing Time (milli seconds)
Bibtex Bookmarks HWLarge MSRC ACE05

SPEN(E2E) 5791 63073 - - -

DVN 18086 211448 - - -

RGS 69890 288058 17323 9451 282864

A-RGS 20925 98921 4812 2294 55355

✓ A-RGS is 3 to 5 times faster than the RGS approach.

✓ The speedup factor for A-RGS is higher for tasks with large
structured outputs.

29

Training Results:

Amortized RGS vs. RGS

Training Time (minutes)
Yeast Bibtex Bookmarks HWLarge MSRC ACE05

SPEN(E2E) 19 114 237 - - -

DVN 4 20 204 - - -

DCD(RGS) 9 95 392 71 115 171

DCD(A-RGS) 5 32 319 44 27 39

✓ DCD(A-RGS) training takes shorter time than DCD(A-RGS)

✓ DVN and SPEN(E2E) perform better on Bibtex and Bookmarks,
whereas DCD(A-RGS) perform comparably or better on Yeast.
Most time (~89%) was consumed on updating the dual weights.

30

Questions ?

