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This thesis studies the problem of structured prediction (SP), where the agent needs to predict
a structured output for a given structured input (e.g., Part-of-Speech tagging sequence for an
input sentence). Many important applications including machine translation in natural language
processing (NLP) and image interpretation in computer vision can be naturally formulated as
structured prediction problems. These prediction problems have an exponentially number of
candidate outputs, which poses significant challenges for inference and learning. Search-based
structured prediction views the prediction of structured outputs as a search process in the space of
candidate outputs guided by a learned scoring function. Search-based approaches offer several
advantages including, incorporation of expressive representations over inputs and outputs with
negligible overhead in inference complexity, and providing a way to trade off accuracy for efficient
inference. In this thesis, I make three contributions to advance search-based structured prediction
methods towards the goal of improving their accuracy and computational-efficiency.

First, I developed a search-based learning approach called “Prune-and-Score” to improve the
accuracy of greedy policy based structured prediction for search spaces with large action spaces.
The key idea is to learn a pruning function that prunes bad decisions and a scoring function that
then selects the best among the remaining decisions. I show the efficacy of this approach for
coreference resolution, i.e., clustering mentions that refer to the same entity, which is a hard NLP
task.

Second, I studied multi-task structured prediction (MTSP) problems in the context of entity
analysis, which includes the three tasks of named entity recognition, co-reference resolution, and



entity linking. I developed three different search-based learning architectures for MTSP problem
that make different trade-offs between speed and accuracy of training and inference. I performed
empirical evaluation of the proposed architectures for entity analysis with state-of-the-art results.

Finally, I developed the HC-Nets framework by integrating the advances in deep learning with
search-based SP methods. I formulate structured prediction as a complete output space search
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Chapter 1: Introduction

Many important problems in artificial intelligence including machine translation in natural lan-
guage processing (NLP) and image interpretation in computer vision can be naturally formulated
as structured prediction problems. These problems require the prediction of multiple labels
simultaneously. Given an input vector x, we need to learn a model to predict an output vector
y. This problem is called structured prediction. Generally, such a model relies on a scoring
function s(x, y) to determine how good y is as the output of x. To find the best y with respect
to x given s(x, y), the structured prediction model needs the inference algorithm to compute
argmaxy∈Y s(x, y). The solution space Y usually contains an exponential number of candidate
outputs, which poses significant challenges for inference and learning.

Structured prediction can achieve better performance than predicting each label individually
because it could exploit the dependencies in the structural output. For example, in handwriting
recognition, taking the constraints of vocabulary and grammar into account would be helpful
for predicting the adjacent letters and words correctly. Similarly, in semantic segmentation, the
contiguity and spatial relationships among the pixel or super-pixels may be important to improve
the prediction accuracy (e.g., sky should appear above the grass). It is also difficult because with
multiple labels, the solution space is exponentially large, therefore a brute-force algorithm that
predicts each label sequence will not be scalable. In practice, we hope the prediction can be done
not only accurately but also quickly.

Search-based structured prediction approaches are an important class of frameworks that
have the potential to address the challenges above. In order to do the structured prediction,
a search-based algorithm first needs a definition of search space. The search space specifies
the search states, which include pairs of structured inputs and outputs, the action space and the
successor functions. Second, a search algorithm is required to specify how the search is conducted.
Finally, we need a learning algorithm and a scoring function model. The learned scoring function
guides the search algorithm to find the best output in the search space.

Compared with other methods, search-based structured prediction has at least two attractive
properties. First, given the formulation of search space, the search algorithm only interacts
with the search states using actions. Thus, unlike other approaches, e.g., graphical models, the
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inference time complexity of search-based algorithms is not sensitive to the complexity of the
features of the search states (factor size). Second, the search-based approaches can optimize any
arbitrary loss functions since it is only used as a black-box to train the scoring function.

In our first work (Ma et al., 2014), we study the partial output space greedy search, and apply
this formulation to coreference resolution problem, an application in NLP domain. Coreference
resolution is an NLP task of clustering a set of mentions such that all mentions in the same
cluster refer to the same entity. In our formulation, mentions are ordered and decisions are
made sequentially. A partial clustering result is a state, and an action either merges an unlabeled
mention into a cluster in the current state, or creates a new cluster. The learned model is used as a
heuristic for choosing the best action and guides the search at each step. To do this, we motivate
and introduce our Prune-and-Score approach, in which we learn two distinct functions that make
decisions in two steps: a pruning function that prunes bad actions from further consideration and
a scoring function that selects the best among the remaining actions. We identify a decomposition
of the overall loss of the Prune-and-Score approach into the pruning loss and the scoring loss, and
reduce the problem of learning these two functions to rank learning, which allows us to leverage
powerful and efficient off-the-shelf rank learners. Some evaluation results on OntoNotes dataset
are presented, and show that it compares favorably to several state-of-the-art approaches as well
as a greedy search-based approach that uses a single scoring function.

Our second work (Ma et al., 2017) tries to address the structured prediction problem that
involves multiple tasks, named multi-task structured prediction (MTSP), under a specific ap-
plication in NLP: entity analysis. Instead of partial output space, we employ complete output
space best first beam search as the inference method, and learn linear scoring functions with
structural SVM. To investigate the ordering of training and inference over different tasks, we
study three different search architectures to solve the MTSP problem, which make different
trade-offs between speed and accuracy of training and inference. One is a “pipeline” architecture,
where the different tasks are solved one after another in sequence. While it has the advantages of
simplicity and reduced search space, the pipeline architecture is too sensitive to the task order
and is prone to error propagation. The second natural candidate is a “joint” architecture, where
we treat the MTSP problem as a single task and search the joint space of multi-task structured
outputs. Although it offers an elegant unified framework, the joint architecture poses a severe
challenge that its branching factor increases in proportion to the number of tasks, making the
search too expensive. We address this problem by learning a pruning function that prunes bad
candidate solutions from the search space for better efficiency. Finally, we introduce a third
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search architecture referred as “cyclic”, whose complexity is intermediate between the two. The
different tasks are done in a sequence, but repeated in the same order as long as the performance
as indicated by the current task’s scoring function improves. The cyclic architecture has the
advantage of not increasing the branching factor of the search beyond that of a single task, while
offering some error tolerance and robustness with respect to task order.

Previous work has shown the effectiveness of complete output space search in structured
prediction (Doppa et al., 2012, 2013a, 2014b). The recent success of deep learning also proves
the power of deep neural network models (Belanger and McCallum, 2016; Belanger et al., 2017;
Gygli et al., 2017; Tu and Gimpel, 2018). Our last piece of work seeks to exploit the advantages
of both models and proposes a new search-based framework which extends the earlier work on
HC-Search Doppa et al. (2012) to neural networks. In particular our approach calledHC-nets,
learns two real valued functions over input-output sequences: a heuristic function to guide the
search for a good solutions in the complete output space and a cost function to rank the solutions
to pick the best. Both functions are represented as neural networks and are trained offline from
supervised data in the imitation learning framework. Several example applications and preliminary
results are presented in the end.

In summary, the thesis makes the following contributions:

• We developed a search-based learning approach called Prune-and-Score to improve the
accuracy of greedy policy based structured prediction for search spaces with large action
spaces. We showed the efficacy of this approach for coreference resolution, a hard NLP
task.

• We studied three different search-based learning architectures for multi-task structured
prediction problems and evaluated them in the context of entity analysis, a natural language
understanding task.

• We proposed a new framework that synergistically combines the advantages of output space
search based structured prediction methods and representation learning approaches. The
proposed framework is evaluated on multiple benchmark structured prediction tasks with
promising results.
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Chapter 2: Related Work on Structured Prediction

In this section, we will give an overview of the structure prediction problem and different
approaches for solving the problem.

2.1 Structured Prediction Problem

A structured prediction problem specifies a space of structured inputs X , a space of structured
outputs Y , and a non-negative output loss function l : X × Y × Y → R+. Each structured input
x ∈ X is presented by a continuous or discrete vector. We use ŷ to denote the predicted output
and y∗ the true output for a given input. l(x, ŷ, y∗) is the loss associated with labeling a particular
input x by output ŷ when the true output is y∗ (Deshwal et al., 2019). Note that this function
is different from the loss used as the learning objective in training. When ŷ and y∗ are exactly
the same, l would be 0 because there is no error in prediction. Otherwise the larger the l, the
more erroneous ŷ is. Without loss of generality, we assume that each structured output y ∈ Y is
represented using T discrete and/or continuous variables v1, v2, · · · , vT , and each variable vi can
take candidate values from a set C(vi).

Since all algorithms will be learning functions or objectives over input-output pairs, we assume
the availability of a joint feature function Φ : X × Y → Rm that computes an m dimensional
feature vector for any input-output pair. A feature function can be further decomposed to smaller
basic components. For example, in sequence labeling problems, we can define a unary feature
function Φ1(xi, yi) that captures the consistency between each individual xi and yi, and a pairwise
feature function Φ2(yi, yi+1) that captures pairwise compatibility between successive labels. The
overall feature function is as following:

Φ(x, y) =
∑
i

Φ1(xi, yi)︸ ︷︷ ︸
unary features

◦
∑
i

Φ2(yi, yi+1)︸ ︷︷ ︸
pairwise features

(2.1)

The sum above are vector sum, and notation ◦ means vector concatenation. A scoring function
f(Φ; θ) takes this feature vector and the weights θ as input, and scores a candidate structured
output y given a structured input x. Given such a scoring function and a new input x, the output
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computation then involves finding the maximum scoring output:

ŷ = argmax f(Φ(x, y); θ)

In the context of graphical models, each input or output variable is a random variable node. If
there is a basis feature function over a set of variables, the set of corresponding nodes is called
a clique, and this basis feature function is called a factor connected with this clique. The size
of a factor is the number nodes that it contains, and we define the maximum factor size as the
feature complexity. This is critical to the structured prediction inference. Because scoring function
takes the feature function output as input, and changing the value of an output variable will only
affects the factors that contain the variable, this factor size determines how far away the changing
can be propagated. In some inference algorithms (e.g., variable elimination), the computational
complexity depends exponentially on this maximum factor size. An extreme case would be, for
example, each factor contains a single output variable and the input. In this case, the problem
boils down to a multi-class classification problem since the prediction of any variable vi would
never be able to affect the prediction of another variable vj . We will show some example tasks of
different applications.

Example 1: Part-of-Speech (POS) Tagging Task. Each structured input is a sequence of
words. Each output variable vi stands for POS tag of a word. C(vi) is the list of all candidate
POS tags. Hamming loss (number of incorrect POS tags) is typically employed as loss function.
Joint features include unary features (representing words and their POS tags as in a multi-class
classifier) and structural features (e.g., label pairs to capture the compatibility of successive
labels).

Example 2: Image Labeling Task. Each structured input is an image. Each output variable vi
corresponds to a semantic label of one pixel in the image andC(vi) is the list of all candidate labels.
Intersection-over-Union (IoU) loss – similarity between the predicted region and the ground-truth
region for a given semantic labeling – is employed as loss function. Unlike Hamming loss, IoU
loss does not decompose into the losses of individual output variables. Joint features include unary
features and structural features, e.g., context features that count the co-occurrences of different
labels in different spatial relationships such as left, right, above, and below. Intuitively, we are
capturing, for example, whether a pixel labeled “sky” is below another pixel labeled “grass.”

Example 3: Coreference Resolution Task. Each structured input is a sequence of noun phrases,
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named mentions, extracted from a document in the order of their occurrence in the document.
Each output variable vij (i < j) corresponds to a coreferent linking edge that connects to a
pair of mentions. C(vij) only contains two values: true and false indicating coreferent and
non-coreferent relations respectively. Pairwise hamming loss which measures the proportion of
wrong labeled linking edges can be employed as the output loss function. There are also other
task-specific non-decomposable losses, e.g., MUC, BCube, CEAF1, etc. that directly measures
the clustering error. Coreference features include mention pair features (features that capture the
similarity of two mentions, e.g., same string, same number, etc.) and cluster features (features
about the consistency of labels of mentions within each coreferent cluster.

We structure the existing structured prediction literature along two dimensions: non-search-
based vs. search-based frameworks and classical vs. neural network models.

2.2 Non-Search-Based Structured Prediction

The structured prediction problem has interested researchers for a long time, even before the
emergence of deep learning. An important difference between structured prediction learning
and other model learning is that its training algorithm usually requires to invoke the inference
for computing argminy multiple times. Thus the efficiency of inference is more critical and
challenging in SP learning algorithms.

In the probabilistic graphical modeling framework, a distribution over the variables in the
domain is represented as a product of multiple factors based on the structure of a graph. In
conditional random fields (CRFs) (Lafferty et al., 2001a), a potential function is learned that
represents the conditional distribution P (y|x). The exact inference complexity depends on the
maximum factor size in the graph. Structured perceptron and structured SVM (Tsochantaridis
et al., 2004) both learn a linear function by optimizing hinge loss except that SSVM learns to
maximize a margin for the separating hyperplane while perceptron does not. To overcome the
bottleneck of inference speed in training, efforts have been made in improving the efficiency of
exact inference (Samdani and Roth, 2012) or approximate inference (Chang et al., 2015c; Ma et
al., 2019) during training.

With the development of deep learning, researchers have also combined the classical machine
learning models with deep neural networks. The most straightforward way to do this is to replace

1Actually these metrics return the accuracy of clustering output. If we want to use them as losses, we need to use
the result of 1 minus them.
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the linear functions with DNN functions. Deep structured models (DSM) (Chen et al., 2015)
can be viewed as an extension of CRFs where the linear potentials are replaced with non-linear
functions. In DSMs, the potential functions are decomposed into subfunctions for the nodes
and node pairs. The partition function is approximated by loopy belief propagation. Structured
prediction energy network (SPEN) (Belanger and McCallum, 2016; Belanger et al., 2017) further
extends the pairwise potentials to higher order label interactions through non-linear transformation
of label vectors. The energy function returns a value indicating how compatible the output is
given the input, which is very similar to the cost function but with a negative sign in the front.
Training of the SPENs is similar to that of structured SVMs. Deep value network (DVN) (Gygli et
al., 2017) is inspired by policy learning. DVN learns a value function by doing regression over the
true value function (negative of loss function). In DVN, each training example will generate one
data point for regression training, and the value function is learned by optimizing a cross entropy
regression loss over each mini-batch. Our regression based cost function learning is inspired by
this work. Both of the two works above use the gradient based inference to compute argminy∈Y .

Note that the gradient based inference is very similar to the greedy search if we treat each
gradient descent step as an action. Besides the gradient based inference, (Tu and Gimpel, 2018)
proposed the generative inference network, in which a network is learned particularly to generate
the outputs as approximate inference instead of doing gradient descent, and both inference time
and output quality improved.

2.3 Search-Based Frameworks

When talking about search-based approaches for structural prediction, we usually base our
analysis on several properties: complete/partial output search state, search space design, search
algorithm, update procedure, and scoring function model.

Complete/Partial Output State. This property is related to how we define a search state for
the search-based structured prediction. The possible state spaces can be briefly classified into
two classes: partial output space, or complete output space. Usually, a search state will include
the input x and an output labeling ŷ. Figure 2.1 shows an example of solving hand-writing
recognition problem with partial and complete output space search.

For the partial output space, only part of the output variables are assigned labels, and the
remaining variables are left with a default value of “unknown”, while for the complete output
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space, all the variables need to have an assigned label. Both of these formulations have their
advantages. For partial output space, the branching factor is usually small, so that the inference
would be fast, but it is only suitable for problems whose input and output has a sequential ordering.
Note that when the structured output can be predicted with a sequence of dependent actions, it is
easy to apply the imitation learning or reinforcement learning techniques in this case. On the other
hand, for complete output space, it is easier to extract higher order features or representations, or
apply non-decomposable loss for the input output pairs. But the price for this is that its branching
factor might be larger because of the permutation of variable ordering. Also, the search requires
an initial output (as the starting point of a search), and usually the search result would be sensitive
to this initial output.

Partial output space search has been studied for more than ten years. Inspired by the imitation
learning, (Daumé and Marcu, 2005b) proposes beam search optimization framework (LaSO).
LaSO formulates the structured prediction as a sequential decision problem where the output can
be predicted with a sequence of actions, and learns a heuristic function to guide the beam search
to find the path to the ground truth output. The heuristic is usually linear, and is updated along
the way when the ground truth output has become unreachable in the current path. For complete
output space search, (Doppa et al., 2012) discusses learning of a cost function under different
search spaces. TheHC-Search further decomposes the original loss into two parts – generation
loss and selection loss – and learns two functions for optimizing them (Doppa et al., 2013a).

Partial Output Space     vs. Complete Output Space

Input:

y = ????????????

Outputs:

y = c???????????

y = co??????????

y = con?????????

…

Outputs:

y = cangrotulerians

y = congrotulerians

y = congrotulerions

y = congratulerions

…

predict 𝑦0

predict 𝑦1

predict 𝑦2

change 𝑦1: ‘a’  ‘o’

change 𝑦12: ‘a’  ‘o’

change 𝑦5: ‘o’  ‘a’

Figure 2.1: Hand-writing recognition example with partial (left) and complete (right) output space
search.
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Search Space Design. A search space contains five components: search states, actions, succes-
sor function, initial state and terminal state. We focus more on actions and successor functions
here. The definition of actions and successor function directly determines what operator or change
we can apply on a state at each step, and therefore also determines the branching factor and the
time complexity of the search algorithm. Beside the simplest case, one can also define “macro
actions”(Lam et al., 2015) that allow indirect (e.g., limited discrepancy space action (Doppa et
al., 2012; Doppa, 2014)) and more complicated changes to the output.

Search Algorithms. The most common search algorithm for structured prediction is best-first
beam search. With fixed size beam, the beam search could limit the expanded search tree (number
of states) in O(bd) where d is the depth of the search tree and b is the branching factor, but also
allow the search to have a chance of correcting the current paths when the error occurs. When
beam size equals 1, the beam search reduces to the greedy search.

We want to emphasize one more aspect of greedy search. For any problem in structured
prediction, if we learn a policy or a recurrent classifier to predict the output incrementally with
greedy search, all techniques in imitation learning will be applicable. This is usually applied
together with the partial output states. SEARN(Daumé et al., 2009), DAgger(Ross et al., 2011),
and LOLS(Chang et al., 2015a) are the frameworks in this formulation.

Weight Update. This property is about when to perform weight update during search. We have
3 candidate choices: update during search, update after each example, update after each mini-
batch. In other words, we care about whether the search itself is transparent to the optimizer or not.
This is because, due to the formulation of search space, search-based algorithm is doing structure
prediction in the form of “learning for inference” rather than “learning with inference”. Therefore,
compared to the blackbox inference, the search procedure itself contains more information useful
for learning. On the other hand, we can always aggregate the training data during search, and
perform the update after the search on each example. This can be further delayed till the end of
example mini-batch.

When to update is critical for some methods. For example, in beam search optimization,
(Collins and Roark, 2004), (Huang et al., 2012) and (Björkelund and Kuhn, 2014) all apply
“update after search”, but use early update, max-violation update and delayed update respectively
in order to achieve different search behaviors. On the other hand, LaSO employs update during
search, but with error condition. The definition of search error could control the learning to
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perform a relatively conservative or aggressive update in search.

Scoring Function Model. Scoring function model can evaluate a search state, or a state-action
pair, so that the search procedure can be guided. This function can be used as the heuristic function
or cost function in A* search or beam search. The most traditional search-based approaches use
linear scoring functions. Recent works have explored replacing the linear models with deep neural
network models. For example, for LaSO mentioned above, (Wiseman and M. Rush, 2016) further
extends this work by combining beam search optimization with the Seq2seq model (Sutskever et
al., 2014), and replacing the linear function with RNN model.

2.4 Summary of Existing Works

As shown in Table 2.1, we can classify most of the structured prediction approaches into this
four cell table. The left column is about traditional linear methods, and the right column is the
recent progress with DNN models. The bottom row is about search-based methods, while the
top row consists of non-search-based methods. We can place most of the existing works into
this four cell table. All the contributions of this thesis will fall into the two cells in the bottom
row, i.e., the search-based approaches. More specifically, our work Prune-and-Score and MTSP
for entity analysis work is in the bottom-left cell. It is easy to see that the bottom-right cell,
which corresponds to the search-based DNN methods, has not been explored thoroughly. Our
new framework contributes to the bottom-right cell.

Non-Deep Models Deep Models
Non-Search-based CRF, SSVM, SPerceptron DSM, SPEN, DVN, InfNet

Search-based LaSO, Prune&Score, MTSP Seq2Seq-BSO
HC-Search

Table 2.1: Structural prediction approaches.

Taking a closer look at the bottom row of Table 2.1, we can further classify the search-based
approaches with the properties we listed in the last section as shown in Table 2.2. We split the
table into two parts. The upper part corresponds to classical models, while lower part to the DNN
models. Our Prune-and-Score work uses partial space while MTSP is in complete space, but
neither of them uses DNN models. Therefore, they are in the upper part of the table. MTSP is
special because it is dealing with multiple tasks. Our last contribution is a new complete output
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space search algorithm guided by DNN based scoring functions, which corresponds to the last
row in the table.

State Space Scoring Models Update Search Algm.
LaSO Partial Linear During Search Beam Search

Prune&Score Partial DecisionTree After Search Greedy Search
MTSP Complete Linear After Search Beam Search

HC-Search Complete Linear After Search Beam Search
Seq2Seq-BSO Partial DNN During Search Beam Search

HC-Nets Complete DNN After Mini-batch Beam Search

Table 2.2: Search-based structured prediction approaches.

Integrating deep learning advances into structured prediction frameworks raise several chal-
lenges. We need to ensure the stability and robustness of training and inference process. Existing
works (Belanger and McCallum, 2016; Belanger et al., 2017; Gygli et al., 2017) employ gradient-
based inference in the relaxed continuous space followed by rounding to compute the final solution.
This procedure involves a large set of interdependent parameters, including the initial output, step
size, number of steps, and a rounding threshold to convert real-valued output variables back to
discrete space. These parameters contribute to the lack of robustness in training/inference when
employing gradient-based inference. Moreover, the relaxation of structured outputs to continuous
space make it difficult to enforce domain-specific constraints. The only existing work (Lee et
al., 2019) relies on Lagrangian multiplier in the objective to perform constrained optimization.
In our proposed HC-Nets framework, we try to provide a general solution to overcome all the
above-mentioned challenges.
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Chapter 3: Prune-and-Score: Learning Greedy Policies for Structured

Prediction with Application to Coreference Resolution

Greedy policy based structured prediction (SP) methods are very successful in practice (Stoyanov
and Eisner, 2012; Chang et al., 2013; Durrett and Klein, 2013; Xu et al., 2009; Sutskever et al.,
2014; Wiseman and M. Rush, 2016; Kim et al., 2017). The key idea is to pose SP as a sequential
decision-making problem over a fixed ordering of the inter-dependent output variables. However,
this family of methods can be potentially sub-optimal in terms of accuracy when the size of
the structured outputs (number of output variables) and the number of candidate labels for each
output variable is very large. In this Chapter, we develop a search-based learning approach called
“Prune-and-Score” to improve the accuracy of greedy policy based SP methods for such hard
tasks. The key idea is to learn a pruning function that prunes bad decisions and a scoring function
that then selects the best among the remaining decisions. We show the efficacy of this approach
for coreference resolution, i.e., clustering mentions that refer to the same entity, which is a hard
NLP task.

Coreference resolution is the task of clustering a set of mentions in the text such that all
mentions in the same cluster refer to the same entity. It is one of the first stages in deep language
understanding and has a big potential impact on the rest of the stages. Several of the state-
of-the-art approaches learn a scoring function defined over mention pairs, cluster-mention or
cluster-cluster pairs to guide the coreference decision-making process (Daumé III, 2006; Bengtson
and Roth, 2008; Rahman and Ng, 2011b; Stoyanov and Eisner, 2012; Chang et al., 2013; Durrett
et al., 2013; Durrett and Klein, 2013). One common and persistent problem with these approaches
is that the scoring function has to make all the coreference decisions, which leads to a highly
non-realizable learning problem.

Inspired by the HC-Search Framework (Doppa et al., 2014a) for studying a variety of
structured prediction problems (Lam et al., 2013; Doppa et al., 2014c), we study a novel approach
for search-based coreference resolution called Prune-and-Score. HC-Search is a divide-and-
conquer solution that learns multiple components with pre-defined roles, and each of them
contribute towards the overall goal by making the role of the other components easier. TheHC-
Search framework operates in the space of complete outputs, and relies on the loss function which
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is only defined on the complete outputs to drive its learning. Unfortunately, this method does not
work for incremental coreference resolution since the search space for coreference resolution
consists of partial outputs, i.e., a set of mentions only some of which have been clustered so far.

We develop an alternative framework toHC-Search that allows us to effectively learn from
partial output spaces and apply it to greedy coreference resolution. The key idea of our work
is to address the problem of non-realizability of the scoring function by learning two different
functions: 1) a pruning function to prune most of the bad decisions, and 2) a scoring function
to pick the best decision among those that are remaining. Our Prune-and-Score approach is
a particular instantiation of the general idea of learning nearly-sound constraints for pruning,
and leveraging the learned constraints to learn improved heuristic functions for guiding the
search. The pruning constraints can take different forms (e.g., classifiers, decision-lists, or ranking
functions) depending on the search architecture. Therefore, other coreference resolution systems
(Chang et al., 2013; Durrett and Klein, 2013; Björkelund and Kuhn, 2014) can also benefit from
this idea. While our basic idea of two-level selection might appear similar to the cascades or
coarse-to-fine inference architectures (Felzenszwalb and McAllester, 2007; Weiss and Taskar,
2010), the details differ significantly. Importantly, our pruning and scoring functions operate
sequentially at each greedy search step, whereas in the cascades approach, the second level
function makes its prediction only after the first level decision-making is done.

Summary of Contributions. The main contributions of our work are as follows. First, we
motivate and introduce the Prune-and-Score approach to search-based coreference resolution.
Second, we identify a decomposition of the overall loss of the Prune-and-Score approach into the
pruning loss and the scoring loss, and reduce the problem of learning these two functions to rank
learning, which allows us to leverage powerful and efficient off-the-shelf rank learners. Third, we
evaluate our approach on OntoNotes, ACE, and MUC data, and show that it compares favorably
to several state-of-the-art approaches as well as a greedy search-based approach that uses a single
scoring function.

3.1 Related Work

The work on learning-based coreference resolution can be broadly classified into three types.
First, the pair-wise classifier approaches learn a classifier on mention pairs (edges) (Soon et al.,
2001; Ng and Cardie, 2002; Bengtson and Roth, 2008), and perform some form of approximate
decoding or post-processing using the pair-wise scores to make predictions. However, the pair-
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wise classifier approach suffers from several drawbacks including class imbalance (fewer positive
edges compared to negative edges) and not being able to leverage the global structure (instead
making independent local decisions).

Second, the global approaches such as Structured SVMs and Conditional Random Fields
(CRFs) learn a cost function to score a potential clustering output for a given input set of mentions
(Mccallum and Wellner, 2003; Finley and Joachims, 2005; Culotta et al., 2007; Yu and Joachims,
2009; Haghighi and Klein, 2010; Wick et al., 2011, 2012; Fernandes et al., 2012). These methods
address some of the problems with pair-wise classifiers, however, they suffer from the intractability
of “Argmin” inference (finding the least cost clustering output among exponential possibilities)
that is encountered during both training and testing. As a result, they resort to approximate
inference algorithms (e.g., MCMC, loopy belief propagation), which can suffer from local optima.

Third, the incremental approaches construct the clustering output incrementally by processing
the mentions in some order (Daumé III, 2006; Denis and Baldridge, 2008; Rahman and Ng,
2011b; Stoyanov and Eisner, 2012; Chang et al., 2013; Durrett et al., 2013; Durrett and Klein,
2013). These methods learn a scoring function to guide the decision-making process and differ in
the form of the scoring function (e.g., mention pair, cluster-mention or cluster-cluster pair) and
how it is being learned. They have shown great success and are very efficient. Indeed, several of
the approaches that have achieved state-of-the-art results on OntoNotes fall under this category
(Chang et al., 2013; Durrett et al., 2013; Durrett and Klein, 2013; Björkelund and Kuhn, 2014).
However, their efficiency requirement leads to a highly non-realizable learning problem. Our
Prune-and-Score approach is complementary to these methods, as we show that having a pruning
function (or a set of learned pruning rules) makes the learning problem easier and can improve
over the performance of scoring-only approaches. Also, the models in (Chang et al., 2013; Durrett
et al., 2013) try to leverage cluster-level information implicitly (via latent antecedents) from
mention-pair features, whereas our model explicitly leverages the cluster level information.

Coreference resolution systems can benefit by incorporating the world knowledge including
rules, constraints, and additional information from external knowledge bases (Lee et al., 2013;
Rahman and Ng, 2011a; Ratinov and Roth, 2012; Chang et al., 2013; Zheng et al., 2013; Hajishirzi
et al., 2013). Our work is orthogonal to this line of work, but domain constraints and rules can be
incorporated into our model as done in (Chang et al., 2013).
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3.2 Problem Setup

Coreference resolution is a structured prediction problem where the set of mentionsm1,m2, · · · ,mD

extracted from a document correponds to a structured input x and the structured output y cor-
responds to a partition of the mentions into a set of clusters C1, C2, · · · , Ck. Each mention mi

belongs to exactly one of the clusters Cj . We are provided with a training set of input-output
pairs drawn from an unknown distribution D, and the goal is to return a function/predictor
from inputs to outputs. The learned predictor is evaluated against a non-negative loss function
L : X × Y × Y 7→ <+, L(x, y′, y) is the loss associated with predicting incorrect output y′ for
input x when the true output is y (e.g., B-Cubed Score).

In this work, we formulate the coreference resolution problem in a search-based framework.
There are three key elements in this framework: 1) the Search space Sp whose states correspond
to partial clustering outputs; 2) the Action pruning function Fprune that is used to prune irrelevant
actions at each state; and 3) the Action scoring function Fscore that is used to construct a complete
clustering output by selecting actions from those that are left after pruning. Sp is a 3-tuple
〈I, A, T 〉, where I is the initial state function, A gives the set of possible actions in a given state,
and T is a predicate which is true for terminal states. In our case, s0 = I(x) corresponds to a
state where every mention is unresolved, and A(si) consists of actions to place the next mention
mi+1 in each cluster in si or a NEW action which creates a new cluster for it. Terminal nodes
correspond to states with all mentions resolved.

We focus on greedy search. The decision process for constructing an output corresponds to
selecting a sequence of actions leading from the initial state to a terminal state using both Fprune
and Fscore, which are parameterized functions over state-action pairs (Fprune(φ1(s, a)) ∈ <
and Fscore(φ2(s, a)) ∈ <), where φ1 and φ2 stand for feature functions. We want to learn the
parameters of both Fprune and Fscore such that the predicted outputs on unseen inputs have low
expected loss.

3.3 Greedy Prune-and-Score Approach

Our greedy Prune-and-Score approach for coreference resolution is parameterized by a pruning
function Fprune : S ×A 7→ <, a scoring function Fscore : S ×A 7→ <, and a pruning parameter
b ∈ [1, Amax], where Amax is the maximum number of actions at any state s ∈ S . Given a set of
input mentions m1,m2, · · · ,mD extracted from a document (input x), and a pruning parameter
b, our Prune-and-Score approach makes predictions as follows. The search starts at the initial
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Algorithm 1 Greedy Prune-and-Score Resolver
Input: x = set of mentions m1,m2, · · · ,mD from a document D,
〈I, A, T 〉 = Search space definition, Fprune = learned pruning function,
b = pruning parameter, Fscore = learned scoring function
Output: y, the coreference output

1: s← I(x) // initial state
2: while not T (s) do
3: A

′ ← Top b actions from A(s) according to Fprune // prune
4: ap ← arg maxa∈A′ Fscore(s, a) // score
5: s← Apply ap on s
6: end while
7: return coreference output corresponding to s

state s0 = I(x) (see Algorithm 1). At each non-terminal state s, the pruning function Fprune
retains only the top b actions (A′) from A(s) (Step 3), and the scoring function Fscore picks the
best scoring action ap ∈ A′ (Step 4) to reach the next state. When a terminal state is reached its
contents are returned as the prediction. Figure 3.1 illustrates the decision-making process of our
Prune-and-Score approach for an example state.

We now formalize the learning objective of our Prune-and-Score approach. Let ŷ be the
predicted coreference output for a coreference input-output pair (x, y∗). The expected loss of
the greedy Prune-and-Score approach E(Fprune,Fscore) for a given pruning function Fprune and
scoring function Fscore can be defined as follows.

E(Fprune,Fscore) = E(x,y∗)∼D L (x, ŷ, y∗)

Our goal is to learn an optimal pair of pruning and scoring functions
(
Foprune,Foscore

)
that

minimizes the expected loss of the Prune-and-Score approach. The behavior of our Prune-and-
Score approach depends on the pruning parameter b, which dictates the workload of pruning
and scoring functions. For small values of b (aggressive pruning), pruning function learning
may be harder, but scoring function learning will be easier. Similarly, for large values of b
(conservative pruning), scoring function learning becomes hard, but pruning function learning is
easy. Therefore, we would expect beneficial behavior if pruning function can aggressively prune
(small values of b) with little loss in accuracy. It is interesting to note that our Prune-and-Score
approach degenerates to existing incremental approaches that use only the scoring function for
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search (Daumé III, 2006; Rahman and Ng, 2011b) when b = ∞. Additionally, for b = 1, our
pruning function coincides with the scoring function.

Analysis of Representational Power. The following proposition formalizes the intuition that
two functions are strictly better than one in expressive power. See Appendix for the proof.

Proposition 1 Let Fprune and Fscore be functions from the same function space. Then for all
learning problems, minFscore E(Fscore,Fscore) ≥ min(Fprune,Fscore) E(Fprune,Fscore). More-
over there exist learning problems for which minFscore E(Fscore,Fscore) can be arbitrarily worse
than min(Fprune,Fscore) E(Fprune,Fscore).

Proof. The first part of the proposition follows from the fact that the first minimization is over
a subset of the choices considered by the second. For the second part, consider a problem with
a single training instance with search space shown in Figure 3.3. We assume linear Fprune and
Fscore functions of features Φ(n), where n is an action. The highlighted nodes correspond to the
target path. The Prune-and-Score approach with b = 2 can find Fprune and Fscore functions that
are consistent with the target path. For example, with Fprune = (1, 0) and Fscore = (1, 2) and
pruning parameter 2 Prune-and-Score can achieve zero loss on this problem. However, it can be
verified that there is no set of weights that satisfies all the constraints for imitating the target path
by the Scoring-Only approach (Fscore(3) > Fscore(2) and Fscore(8) > Fscore(7) in particular).

3.4 Learning Algorithms

In general, learning the optimal
(
Foprune,Foscore

)
pair can be intractable due to their potential

interdependence. Specifically, when learning Fprune in the worst case there can be ambiguity
about which of the non-optimal actions to retain, and for only some of those an effective Fscore
can be found. However, we observe a loss decomposition in terms of the individual losses due to
Fprune and Fscore, and develop a stage-wise learning approach that first learns Fprune and then
learns a corresponding Fscore.

3.4.1 Loss Decomposition

The overall loss of the Prune-and-Score approach E (Fprune,Fscore) can be decomposed into
pruning loss εprune, the loss due to Fprune not being able to retain the optimal terminal state in
the search space; and scoring loss εscore|Fprune , the additional loss due to Fscore not guiding the
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(a) Text with input set of mentions
Ramallah ( West Bank 2 )1 10-15 ( AFP3) - Eyewitnesses4 reported that Palestinians5
demonstrated today Sunday in the West Bank6 against the Sharm el-Sheikh7 summit
to be held in Egypt8 tomorrow Monday. In Ramallah9, around 500 people10 took to
the town11’s streets chanting slogans denouncing the summit ...

(b) Illustration of Prune-and-Score approach

1m
9m 3m 4m

6m
2m

1C

1a 2a 3a 4a 5a 6a 7a

5m

10m 7m
11m

2C 3C 4C 5C 6C

State: s = {C1, C2, C3, C4, C5, C6} Actions: A(s) = {a1, a2, a3, a4, a5, a6, a7}
Pruning step:

Scoring step:

2.5             2.2               1.9                1.5              1.4              0.7              0.4

4.5             3.1              2.6

2a 1a 7a 5a 6a 3a 4a

1a 2a 7a
A′(s) = {a2, a1, a7}

b = 3

Decision: a1 is the best action for state s

Fprune values

Fscore values

Figure 3.1: Illustration of Prune-and-Score approach. (a) Text with input set of mentions.
Mentions are highlighted and numbered. (b) Illustration of decision-making process for mention
m11. The partial clustering output corresponding to the current state s consists of six clusters
denoted by C1, C2, · · · , C6. Highlighted circles correspond to the clusters. Edges from mention
m11 to each of the six clusters and to itself stand for the set of possible actions A(s) in state s,
and are denoted by a1, a2, · · · , a7. The pruning function Fprune scores all the actions in A(s)
and only keeps the top 3 actions A′ = {a2, a1, a7} as specified by the pruning parameter b. The
scoring function picks the best scoring action a1 ∈ A′ as the final decision, and mention m11 is
merged with cluster C1.
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L = 0.8 L = 0.9 L = 0.5 L = 0.2
L = 0

(4) = (0, 1)
(5) = (1, 0)

(6) = (-1, -1)

(1) = (1, 1)

(2) = (-1.5, 3.5)

(3) = (-0.5, 2.5)

(7) = (4, 1)

(8) = (2, 3)

1

2

3

4

5 6
7

8

Figure 3.2: An example that illustrates that methods that use only scoring function for search can
suffer arbitrary large loss compared to Prune-and-Score approach.

greedy search to the best terminal state after pruning using Fprune. Below, we will define these
losses more formally.

Pruning Loss is defined as the expected loss of the Prune-and-Score approach when we perform
greedy search with Fprune and F∗score, the optimal scoring function. A scoring function is said
to be optimal if at every state s in the search space Sp, and for any set of remaining actions
A(s), it can score each action a ∈ A(s) such that greedy search can reach the best terminal
state (as evaluated by task loss function L) that is reachable from s through A(s). Unfortunately,
computing the optimal scoring function is highly intractable for the non-decomposable loss
functions that are employed in coreference resolution (e.g., B-Cubed F1). The main difficulty is
that the decision at any one state has interdependencies with future decisions (see Section 5.5 in
(Daumé III, 2006) for more details). So we need to resort to some form of approximate optimal
scoring function that exhibits the intended behavior. This is very similar to the dynamic oracle
concept developed for dependency parsing (Goldberg and Nivre, 2013).

Let y∗prune be the coreference output corresponding to the terminal state reached from input
x by Prune-and-Score approach when performing search using Fprune and F∗score. Then the
pruning loss can be expressed as follows.

εprune = E(x,y∗)∼D L
(
x, y∗prune, y

∗)
Scoring Loss is defined as the additional loss due to Fscore not guiding the greedy search to
the best terminal state reachable via the pruning function Fscore (i.e., y∗prune). Let ŷ be the
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coreference output corresponding to the terminal state reached by Prune-and-Score approach by
performing search with Fprune and Fscore for an input x. Then the scoring loss can be expressed
as follows:

εscore|Fprune = E(x,y∗)∼D L (x, ŷ, y∗)− L
(
x, y∗prune, y

∗)
The overall loss decomposition of our Prune-and-Score approach can be expressed as follows.

E (Fprune,Fscore) =E(x,y∗)∼D L
(
x, y∗prune, y

∗)︸ ︷︷ ︸
εprune

+

E(x,y∗)∼D L (x, ŷ, y∗)− L
(
x, y∗prune, y

∗)︸ ︷︷ ︸
εscore|Fprune

3.4.2 Stage-wise Learning

The loss decomposition motivates a learning approach that targets minimizing the errors of
pruning and scoring functions independently. In particular, we optimize the overall loss of the
Prune-and-Score approach in a stage-wise manner. We first train a pruning function F̂prune to
optimize the pruning loss component εprune and then train a scoring function F̂score to optimize
the scoring loss εscore|F̂prune conditioned on F̂prune.

F̂prune ≈ arg minFprune∈Fp
εprune

F̂score ≈ arg minFscore∈Fs
εscore|F̂prune

Note that this approach is myopic in the sense that F̂prune is learned without considering the
implications for learning F̂score. Below, we first describe our approach for pruning function
learning, and then explain our scoring function learning algorithm.

3.4.3 Pruning Function Learning

In our greedy Prune-and-Score approach, the role of the pruning function Fprune is to prune away
irrelevant actions (as specified by the pruning parameter b) at each search step. More specifically,
we want Fprune to score actions A(s) at each state s such that the optimal action a∗ ∈ A(s) is
ranked within the top b actions to minimize εprune. For this, we assume that for any training
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input-output pair (x, y∗) there exists a unique action sequence, or solution path (initial state
to terminal state), for producing y∗ from x. More formally, let (s∗0, a

∗
0), (s

∗
1, a
∗
1), · · · , (s∗D,∅)

correspond to the sequence of state-action pairs along this solution path, where s∗0 is the initial
state and s∗D is the terminal state. The goal is to learn the parameters of Fprune such that at each
state s∗i , a

∗
i ∈ A(s∗i ) is ranked among the top b actions.

While we can employ an online-LaSO style approach (Daumé and Marcu, 2005b; Xu et al.,
2009) to learn the parameters of the pruning function, it is quite inefficient, as it must regenerate
the same search trajectory again and again until it learns to make the right decision. Additionally,
this approach limits applicability of the off-the-shelf learners to learn the parameters of Fprune.
To overcome these drawbacks, we apply offline training.

Reduction to Rank Learning. We reduce the pruning function learning to a rank learning
problem. This allows us to leverage powerful and efficient off-the-shelf rank-learners (Liu, 2009).
The reduction is as follows. At each state s∗i on the solution path of a training example (x, y∗),
we create an example by labeling optimal action a∗i ∈ A(s∗i ) as the only relevant action, and then
try to learn a ranking function that can rank actions such that the relevant action a∗i is in the top b
actions, where b is the input pruning paramter. In other words, we have a rank learning problem,
where the learner’s goal is to optimize the Precision at Top-b. The training approach creates such
an example for each state s in the solution path. The set of aggregate imitation examples collected
over all the training data is then given to a rank learner (e.g., LambdaMART (Burges, 2010)) to
learn the parameters of Fprune by optimizing the Precision at Top-b loss. See Algorithm 2 for the
pseudocode.

If we can learn a function Fprune that is consistent with these imitation examples, then the
learned pruning function is guaranteed to keep the solution path within the pruned space for all the
training examples. We can also employ more advanced imitation learning algorithms including
DAgger (Ross et al., 2011) and SEARN (Hal Daumé III et al., 2009) if we are provided with an
(approximate) optimal scoring function F∗score that can pick optimal actions at states that are not
in the solution path (i.e., off-trajectory states).

3.4.4 Scoring Function Learning

Given a learned pruning function Fprune, we want to learn a scoring function that can pick
the best action from the b actions that remain after pruning at each state. We formulate
this problem in the framework of imitation learning (Khardon, 1999). More formally, let
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Algorithm 2 Pruning Function Learning
Input: D = Training data, (I, A, T ) = Search space, b = Pruning parameter

1: Initialize the set of ranking examplesR = ∅
2: for each training example (x, y∗) ∈ D do
3: s← I(x) // initial state
4: while not T (s) do
5: Generate an example Rt to imitate this search step
6: Aggregate training data: R = R∪Rt
7: s← Apply a∗ on s
8: end while
9: end for

10: Fprune = Rank-Learner(R)
11: return pruning function Fprune

(ŝ0, a
∗
0), (ŝ1, a

∗
1), · · · , (ŝ∗D,∅) correspond to the sequence of state-action pairs along the greedy

trajectory obtained by running the Prune-and-Score approach with Fprune and F∗score, the optimal
scoring function, on a training example (x, y∗), where ŝ∗D is the best terminal state in the pruned
space. The goal of our imitation training approach is to learn the parameters of Fscore such that
at each state ŝi, a∗i ∈ A′ is ranked higher than all other actions in A′, where A′ ⊆ A(ŝi) is the set
of b actions that remain after pruning.

It is important to note that the distribution of states in the pruned space due to Fprune on
the testing data may be somewhat different from those on training data. Therefore, we train our
scoring function via cross-validation by training the scoring function on heldout data that was not
used to train the pruning function. This methodology is commonly employed in Re-Ranking and
Stacking approaches (Collins, 2000; Cohen and de Carvalho, 2005).

Our scoring function learning procedure uses cross validation and consists of the following
four steps. First, we divide the training data D into k folds. Second, we learn k different pruners,
where each pruning function F iprune is learned using the data from all the folds excluding the ith

fold. Third, we generate ranking examples for scoring function learning as described above using
each pruning function F iprune on the data it was not trained on. Finally, we give the aggregate set
of ranking examplesR to a rank learner (e.g., SVM-Rank or LambdaMART) to learn the scoring
function Fscore. See Algorithm 3 for the pseudocode.

Approximate Optimal Scoring Function. If the learned pruning function is not consistent with
the training data, we will encounter states ŝi that are not on the target path, and we will need
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Algorithm 3 Scoring Function Learning via Cross Validation
Input: D = Training data, Sp = Search space, b = Pruning parameter, F∗score = Optimal scoring
function

1: Divide the training set D into k folds D1,D2, · · · ,Dk
2: // Learn k different pruning functions
3: for i = 1 to k do
4: Ti = ∪j 6=i Dj
5: F iprune = Learn-Pruner(Ti,Sp, b)
6: end for
7: // Generate ranking examples for scoring function training
8: Intialize the set of ranking examplesR = ∅
9: for i = 1 to k do

10: for each training example (x, y∗) ∈ Di do
11: s← I(x) // initial state
12: while not Terminal(s) do
13: A′ ← Top b actions from A(s) according to F iprune
14: a∗ ← argmaxa∈A′ F∗score(s, a)
15: Generate ranking example Rt to imitate this search step
16: Aggregate training data: R = R∪Rt
17: s← Apply a∗ on s
18: end while
19: end for
20: end for
21: Fscore = Rank-Learner(R)
22: return scoring function Fscore

some supervision for learning in those cases. As discussed before in Section 3.4.1, computing
an optimal scoring function F∗score is intractable for combinatorial loss functions that are used
for coreference resolution. So we employ an approximate function from existing work that is
amenable to evaluate partial outputs (Daumé III, 2006). It is a variant of the ACE scoring function
that removes the bipartite matching step from the ACE metric. Moreover this score is computed
only on the partial coreference output corresponding to the “after state” s′ resulting from taking
action a in state s, i.e., F∗score(s, a) = F∗score(s′). To further simplify the computation, we give
uniform weight to the three types of costs: 1) Credit for correct linking, 2) Penalty for incorrect
linking, and 3) Penalty for missing links. Intuitively, this is similar to the correct-link count
computed only on a subgraph. We direct the reader to (Daumé III, 2006) for more details (see
Section 5.5).
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3.5 Experiments and Results

In this section, we evaluate our greedy Prune-and-Score approach on three benchmark corpora –
OntoNotes 5.0 (Pradhan et al., 2012), ACE 2004 (NIST, 2004), and MUC6 (MUC6, 1995) – and
compare it against the state-of-the-art approaches for coreference resolution. For OntoNotes data,
we report the results on both gold mentions and predicted mentions. We also report the results on
gold mentions for ACE 2004 and MUC6 data.

3.5.1 Experimental Setup

Datasets. For OntoNotes corpus, we employ the official split for training, validation, and testing.
There are 2802 documents in the training set; 343 documents in the validation set; and 345
documents in the testing set. The ACE 2004 corpus contains 443 documents. We follow the
(Culotta et al., 2007; Bengtson and Roth, 2008) split in our experiments by employing 268
documents for training, 68 documents for validation, and 107 documents (ACE2004-CULOTTA-
TEST) for testing. We also evaluate our system on the 128 newswire documents in ACE 2004
corpus for a fair comparison with the state-of-the-art. The MUC6 corpus containts 255 documents.
We employ the official test set of 30 documents (MUC6-TEST) for testing purposes. From
the remaining 225 documents, which includes 195 official training documents and 30 dry-run
test documents, we randomly pick 30 documents for validation, and use the remaining ones for
training.

Evaluation Metrics. We compute three most popular performance metrics for coreference
resolution: MUC (Vilain et al., 1995), B-Cubed (Bagga and Baldwin, 1998), and Entity-based
CEAF (CEAFφ4) (Luo, 2005). As it is commonly done in CoNLL shared tasks (Pradhan et
al., 2012), we employ the average F1 score (CoNLL F1) of these three metrics for comparison
purposes. We evaluate all the results using the updated version1 (7.0) of the coreference scorer.

Features. We built2 our coreference resolver based on the Easy-first coreference system (Stoyanov
and Eisner, 2012), which is derived from the Reconcile system (Stoyanov et al., 2010). We
essentially employ the same features as in the Easy-first system. However, we provide some
high-level details that are necessary for subsequent discussion. Recall that our features φ(s, a)

for both pruning and scoring functions are defined over state-action pairs, where each state s
1http://code.google.com/p/reference-coreference-scorers/
2See http://research.engr.oregonstate.edu/dral/ for our software.
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consists of a set of clusters and an action a corresponds to merging an unprocessed mention
m with a cluster C in state s or create one for itself. Therefore, φ(s, a) defines features over
cluster-mention pairs (C,m). Our feature vector consists of three parts: a) mention pair features;
b) entity pair features; and c) a single indicator feature to represent NEW action (i.e., mention m
starts its own cluster). For mention pair features, we average the pair-wise features over all links
between m and every mention mc in cluster C (often referred to as average-link). Note that, we
cannot employ the best-link feature representation because we perform offline training and do not
have weights for scoring the links. For entity pair features, we treat mention m as a singleton
entity and compute features by pairing it with the entity represented by cluster C (exactly as in
the Easy-first system). The indicator feature will be 1 for the NEW action and 0 for all other
actions. We have a total of 140 features: 90 mention pair features; 49 entity pair features; and
one NEW indicator feature. We believe that our approach can benefit from employing features of
the mention for the NEW action (Rahman and Ng, 2011b; Durrett and Klein, 2013). However,
we were constrained by the Reconcile system and could not leverage these features for the NEW
action.

Base Rank-Learner. Our pruning and scoring function learning algorithms need a base rank-
learner. We employ LambdaMART (Burges, 2010), a state-of-the art rank learner from the
RankLib3 library. LambdaMART is a variant of boosted regression trees. We use a learning rate
of 0.1, specify the maximum number of boosting iterations (or trees) as 1000 noting that its actual
value is automatically decided based on the validation set, and tune the number of leaves per tree
based on the validation data. Once we fix the hyper-parameters of LambdaMART, we train the
final model on all of the training data. LambdaMART uses an internal train/validation split of the
input ranking examples to decide when to stop the boosting iterations. We fixed this ratio to 0.8
noting that the performance is not sensitive to this parameter. For scoring function learning, we
used 5 folds for the cross-validation training.

Pruning Parameter b. The hyper-parameter b controls the amount of pruning in our Prune-and-
Score approach. We perform experiments with different values of b and pick the best value based
on the performance on the validation set.

Singleton Mention Filter for OntoNotes Corpus. We employ the Illinois-Coref system (Chang
et al., 2012) to extract system mentions for our OntoNotes experiments, and observe that the
number of predicted mentions is thrice the number of gold mentions. Since the training data

3http://sourceforge.net/p/lemur/wiki/RankLib/
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provides the clustering supervision for only gold mentions, it is not clear how to train with the
system mentions that are not part of gold mentions. A common way of dealing with this problem
is to treat all the extra system mentions as singleton clusters (Durrett and Klein, 2013; Chang et
al., 2013). However, this solution most likely will not work with our current feature representation
(i.e., NEW action is represented as a single indicator feature). Recall that to predict these extra
system mentions as singleton clusters with our incremental clustering approach, the learned model
should first predict a NEW action while processing these mentions to form a temporary singleton
cluster, and then refrain from merging any of the subsequent mentions with that cluster so that
it becomes a singleton cluster in the final clustering output. However, in OntoNotes corpus, the
training data does not include singleton clusters for the gold mentions. Therefore, only the large
number (57%) of system mentions that are not part of gold mentions will constitute the set of
singleton clusters. This leads to a highly imbalanced learning problem because our model needs
to learn (the weight of the single indicator feature) to predict NEW as the best action for a large
set of mentions, which will bias our model to predict large number of NEW actions during testing.
As a result, we will generate many singleton clusters, which will hurt the recall of the mention
detection after post-processing. Therefore, we aim to learn a singleton mention filter that will
be used as a pre-processor before training and testing to overcome this problem. We would like
to point out that our filter is complementary to other solutions (e.g., employing features that can
discriminate a given mention to be anaphoric or not in place of our single indicator feature, or
using a customized loss to weight our ranking examples for cost-sensitive training)(Durrett and
Klein, 2013).

Filter Learning. The singleton mention filter is a classifier that will label a given mention as
“singleton” or not. We represent each mention m in a document by averaging the mention-pair
features φ(m,m′) of the k-most similar mentions (obtained by ranking all other mentions m′ in
the document with a learned ranking function R given m) and then learn a decision-tree classifier
by optimizing the F1 loss. We learn the mention-ranking function R by optimizing the recall of
positive pairs for a given k, and employ LambdaMART as our base ranker. The hyper-parameters
are tuned based on the performance on the validation set.

3.5.2 Results

We first describe the results of the learned singleton mention filter, and then the performance of
our Prune-and-Score approach with and without the filter. Next, we compare the results of our
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approach with several state-of-the-art approaches for coreference resolution.

Singleton Mention Filter Results. Table 3.1 shows the performance of the learned singleton
mention filter with k = 2 noting that the results are robust for all values of k ≥ 2. As we can see,
the learned filter improves the precision of the mention detection with only small loss in the recall
of gold mentions.

Mention Detection Accuracy
P R F1

Before- 43.18% 86.99% 57.71%
filtering (16664/38596) (16664/19156)
After- 79.02% 80.98% 79.97%
filtering (15516/19640) (15516/19156)

Table 3.1: Performance of the singleton mention filter on the OntoNotes 5.0 development set.
The numerators of the fractions in the brackets show the exact numbers of mentions that are
matched with the gold mentions.

Prune-and-Score Results. Table 3.2 shows the performance of Prune-and-Score approach with
and without the singleton mention filter. We can see that the results with filter are much better
than the corresponding results without the filter. These results show that our approach can benefit
from having a good singleton mention filter.

Filter settings MUC B3 CEAFφ4 CoNLL

OntoNotes 5.0 Dev Set w. Predict Ment.
O.S. (w.o. Filter) 66.73 53.40 44.23 54.79
P&S (w.o. Filter) 65.93 52.96 50.24 56.38
P&S (w. Filter) 71.18 58.87 57.88 62.64

Table 3.2: Performance of Prune-and-Score approach with and without the singleton mention
filter, and Only-Score approach without the filter.

Table 3.3 shows the performance of different configurations of our Prune-and-Score approach.
As we can see, Prune-and-Score gives better results than the configuration where we employ only
the scoring function (b = ∞) for small values of b. The performance is clearly better than the
degenerate case (b = ∞) over a wide range of b values, suggesting that it is not necessary to
carefully tune the parameter b.
Comparison to State-of-the-Art. Table 3.4 shows the results of our Prune-and-Score approach
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Pruning param.
b

MUC B3 CEAFφ4 CoNLL

OntoNotes 5.0 Dev Set w. Predict Mentions
2 69.12 56.80 56.30 60.74
3 70.50 57.89 57.24 61.88
4 71.00 58.65 57.41 62.35
5 71.18 58.87 57.88 62.64
6 70.93 58.66 57.85 62.48
8 70.12 58.13 57.37 61.87
10 70.24 58.34 56.27 61.61
20 67.97 57.73 56.63 60.78
∞ 67.03 56.31 55.56 59.63

Table 3.3: Performance of Prune-and-Score approach with different values of the pruning
parameter b. For b =∞, Prune-and-Score becomes an Only-Scoring algorithm.

compared with the following state-of-the-art coreference resolution approaches: HOTCoref
system (Björkelund and Kuhn, 2014); Berkeley system with the FINAL feature set (Durrett
and Klein, 2013); CPL3M system (Chang et al., 2013); Stanford system (Lee et al., 2013);
Easy-first system (Stoyanov and Eisner, 2012); and Fernandes et al., 2012 (Fernandes et al.,
2012). Only Scoring is the special case of our Prune-and-Score approach where we employ only
the scoring function. This corresponds to existing incremental approaches (Daumé III, 2006;
Rahman and Ng, 2011b). We report the best published results for CPL3M system, Easy-first, and
Fernandes et al., 2012. We ran the publicly available software to generate the results for Berkeley
and Stanford systems with the updated CoNLL scorer. We include the results of Prune-and-Score
for best b on the development set with singleton mention filter for the comparison. In Table 3.4,
’-’ indicates that we could not find published results for those cases. We see that results of
the Prune-and-Score approach are comparable to or better than the state-of-the-art including
Only-Scoring.

3.6 Summary

We introduced the Prune-and-Score approach for greedy coreference resolution whose main idea
is to learn a pruning function along with a scoring function to effectively guide the search. We
showed that our approach improves over the methods that only learn a scoring function, and gives
comparable or better results than several state-of-the-art coreference resolution systems.
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MUC B3 CEAFφ4 CoNLL
P R F1 P R F1 P R F1 Avg-F1

a. Results on OntoNotes 5.0 Test Set with Predicted Mentions
Prune-and-Score 81.03 66.16 72.84 66.90 51.10 57.94 68.75 44.34 53.91 61.56

Only-Scoring 75.95 61.53 67.98 63.94 47.37 54.42 58.54 49.76 53.79 58.73
HOTCoref 67.46 74.3 70.72 54.96 62.71 58.58 52.27 59.4 55.61 61.63

CPL3M - - 69.48 - - 57.44 - - 53.07 60.00
Berkeley 74.89 67.17 70.82 64.26 53.09 58.14 58.12 52.67 55.27 61.41

Fernandes et al., 2012 75.91 65.83 70.51 65.19 51.55 57.58 57.28 50.82 53.86 60.65
Stanford 65.31 64.11 64.71 56.54 48.58 52.26 46.67 52.29 49.32 55.43

b. Results on OntoNotes 5.0 Test Set with Gold Mentions
Prune-and-Score 88.10 85.85 86.96 76.82 76.16 76.49 80.90 74.06 77.33 80.26

Only-Scoring 86.96 84.52 85.73 74.51 74.25 74.38 79.04 70.67 74.62 78.24
CPL3M - - 84.80 - - 78.74 - - 68.75 77.43

Berkeley 85.73 89.26 87.46 78.23 75.11 76.63 82.89 70.86 76.40 80.16
Stanford 89.94 78.17 83.64 81.75 68.95 74.81 73.97 61.20 66.98 75.14

c. Results on ACE2004 Culotta Test Set with Gold Mentions
Prune-and-Score 85.57 72.68 78.60 90.09 77.02 83.04 74.64 86.02 79.42 80.35

Only-Scoring 82.75 69.25 75.40 88.54 74.22 80.75 73.69 85.22 78.58 78.24
CPL3M - - 78.29 - - 82.20 - - 79.26 79.91

Stanford 82.91 69.90 75.85 89.14 74.05 80.90 75.67 77.45 76.55 77.77

d. Results on ACE2004 Newswire with Gold Mentions
Prune-and-Score 89.72 75.72 82.13 90.89 76.15 82.87 72.43 86.83 78.69 81.23

Only-Scoring 86.92 76.49 81.37 88.10 75.83 81.51 73.15 84.31 78.05 80.31
Easy-first - - 80.1 - - 81.8 - - - -
Stanford 84.75 75.34 79.77 87.50 74.59 80.53 73.32 81.49 77.19 79.16

e. Results on MUC6 Test Set with Gold Mentions
Prune-and-Score 89.53 82.75 86.01 86.48 76.18 81.00 60.74 80.33 68.68 78.56

Only-Scoring 86.77 80.96 83.76 81.72 72.99 77.11 57.56 75.38 64.91 75.26
Easy-first - - 88.2 - - 77.5 - - - -
Stanford 91.19 69.54 78.91 91.07 63.39 74.75 62.43 69.62 65.83 73.16

Table 3.4: Comparison of Prune-and-Score with state-of-the-art approaches. Metric values reflect
version 7 of CoNLL scorer.
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Our Prune-and-Score approach is a particular instantiation of the general idea of learning
nearly-sound constraints for pruning, and leveraging the learned constraints to learn improved
heuristic functions for guiding the search (See (Chen et al., 2014) for another instantiation of this
idea for multi-object tracking in videos). Therefore, other coreference resolution systems (Chang
et al., 2013; Durrett and Klein, 2013; Björkelund and Kuhn, 2014) can also benefit from this idea.
One way to further improve the peformance of our approach is to perform a search in the Limited
Discrepancy Search (LDS) space (Doppa et al., 2014b) using the learned functions.
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Chapter 4: Search-based Learning Algorithms for Multi-Task Structured

Prediction

Many problems in AI including natural language processing (NLP) and computer vision require
solving multiple related structured prediction tasks. Entity Analysis is one of the key steps in NLP
and includes multiple subtasks such as detecting the mentions, clustering them to corefering sets,
linking them to entities, and identifying their semantic roles. Each task requires jointly assigning
values to multiple inter-dependent output variables.

In multi-task structured prediction (MTSP), we learn a single joint scoring function to evaluate
candidate outputs of all tasks. The scoring function includes inter-task and intra-task features
and is trained with the goal of scoring the correct outputs of all tasks higher than all alternatives.
Learning the scoring function involves adjusting its weights to make it consistent on the training
data. Given such a scoring function, the inference task is to generate the outputs for all tasks
that maximizes the joint scoring function. By viewing MTSP problem through the lens of AI
search, we design learning algorithms and heuristics to search the space of solutions to find the
best scoring output.

Two different architectures for MTSP present themselves as natural candidates. One is a
“pipeline” architecture, where the different tasks are solved one after another in sequence. Each
task in the pipeline adds more information that is used by the following tasks. While it has the
advantages of simplicity and reduced search space, as we will see, the pipeline architecture is too
sensitive to the task order and is prone to error propagation.

The second natural candidate is a “joint” architecture, where we treat the MTSP problem as
a single task and search the joint space of multi-task structured outputs. Although it offers an
elegant unified framework, the joint architecture poses multiple challenges. First, the branching
factor of the joint search space increases in proportion to the number of tasks, making the search
too expensive. To address this problem and make the training process more efficient, we learn a
pruning function that prunes bad candidate solutions from the search space. Second, it is also
important to initiate the search from a good starting solution to reduce the effective depth of the
search. We do this by training an i.i.d. classifier to predict each output separately. Given a good
initializer, it may only be necessary to correct a few mistakes, which reduces the effective search



32

depth. Third, even with reduced branching factors and depth, exhaustive search is impractical.
Following many other works, we employ best first beam search, which is space efficient.

Finally, we introduce a third search architecture referred as “cyclic,” whose complexity is
intermediate between the above two architectures. The different tasks are done in a sequence, but
repeated in the same order as long as the performance as indicated by the current task’s scoring
function improves. The cyclic architecture has the advantage of not increasing the branching
factor of the search beyond that of a single task, while offering some error tolerance and robustness
with respect to task order. We make the following contributions. First, we establish the viability
of search-based multi-task structured prediction for entity analysis by jointly solving named entity
recognition, coreference resolution, and entity linking tasks on multiple benchmark datasets,
namely ACE 2005 (NIST, 2005) and TAC-KBP 2015 (Ji et al., 2015). Second, we show that
the joint approach not only outperforms the pipeline approach with all task orders, but also
the prior state-of-the-art approach based on graphical models. Third, we develop and evaluate
new search space pruning approaches. The score-agnostic pruning method, which prunes the
search space before learning the scoring function, reduces the inference time by about half with
negligible loss in accuracy. The score-sensitive pruning approach learns a pruning function after
the scoring function has been learned and improves the accuracy further. Finally, we show that
the cyclic architecture offers competitive performance compared to the joint architecture at a
reduced computational cost even relative to the pruning-based approaches.

4.1 Related Work

Prior work on structured prediction mostly considers single tasks. There are many frameworks
to solve structured prediction problems with varying strengths and weaknesses. They include
generalization of standard classification approaches such as conditional random field (CRF)
(Lafferty et al., 2001b), structured SVM (SSVM) (Tsochantaridis et al., 2004), and structured
perceptron, which require a good inference algorithm to make predictions; and search-based
approaches that learn different forms of search control knowledge such as greedy policies (Daumé
et al., 2009; Ross et al., 2011), heuristic functions (Daumé and Marcu, 2005b; Xu et al., 2009),
heuristic and cost functions (Doppa et al., 2014a; Lam et al., 2015), and coarse-to-fine knowledge
(Weiss and Taskar, 2010).

There is some work on jointly solving two structured prediction tasks (Daumé and Marcu,
2005a; Finkel and Manning, 2009; Hajishirzi et al., 2013; Li and Ji, 2014), but very little work
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on jointly learning and reasoning with three or more tasks (Singh et al., 2013; Durrett and
Klein, 2014). There are graphical modeling approaches that learn a global scoring function in
the framework of CRFs or Structured SVMs (Finkel and Manning, 2009; Denis and Baldridge,
2007; Singh et al., 2013; Durrett and Klein, 2014). Indeed, our work is inspired by the work
of (Durrett and Klein, 2014) which employed graphical models and approximate inference via
belief propagation for integrating multiple NLP subtasks for joint entity analysis. Integer linear
programming (ILP) (Roth and Yih, 2005) formulation and inference is another potential approach,
and has shown a lot of success in practice (Denis and Baldridge, 2007; Cheng and Roth, 2013).
But it faces severe efficiency issue due to the large number of variables and constraints from
multiple tasks. Also, the ILP formulation leads one to use optimized blackbox ILP engines, where
learning new search control knowledge, e.g., the pruning rules in our approach, is difficult.

In this paper, we address the problem of joint inference and learning through the framework
of search-based structured prediction, which combines the benefits of structured SVM and AI
search, and has found success in multiple applications (Daumé and Marcu, 2005b; Xu et al., 2009;
Daumé et al., 2009; Doppa et al., 2014a). Some approaches learn a scoring function to guide
beam search in the space of partial structured outputs (incremental prediction approach) (Daumé
and Marcu, 2005a; Bohnet and Nivre, 2012; Hatori et al., 2012). In contrast, we perform search
in the space of complete structured outputs (Doppa et al., 2014b) and use good initialization
to improve the accuracy of learning and inference. Our formulation also allows us to optimize
non-decomposable loss functions. Additionally, we also handle latent variables, which do not
appear in the supervised output, but nevertheless indirectly determine the output. One example
of latent variables are the coreference links between a mention and a single previous (parent)
mention that it co-refers. While there are many potential parents for a mention, they are not
usually provided in the supervised output, but are extremely useful.

4.2 Problem Setup

Multi-Task Structured Prediction. We consider the problem of multi-task structured predic-
tion (MTSP), where the goal is to predict the structured outputs of k (k > 1) related tasks,
y = (y1, y2, · · · , yk), for a given structured input x. Without loss of generality, assume that
the structured output for a task t, yt consists of T output variables: yt = (yt1, y

t
2, . . . , y

t
T ),

and each output variable ytj can take values from a candidate set C(ytj) of size d. We are
provided with a training set of input-output pairs {(x, y∗)}, where x is a structured input and
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y∗ = (y1∗, y2∗, · · · , yk∗) is the correct multi-task structured output. The goal is to learn a
function/predictor that can accurately map structured inputs to multi-task structured outputs.

Single task structured prediction problems are traditionally formulated as learning a linear
scoring function of a joint feature vector Φ over an input and candidate output pair x, y so that
for any input x, the correct output y∗ has the highest score over all possible y’s. We generalize
this to multi-task structured prediction, where Φ now consists of both intra-task and inter-task
features, which respectively encode the dependencies between the output variables of a single
task and different tasks.

MTSP for Entity Analysis. In this paper, we consider entity analysis which consists of several
related NLP tasks in recognizing and mapping noun phrases, also called mentions, to entities in a
knowledge base (KB). In particular, these include named entity recognition (NER), coreference
resolution (CR), and entity linking (EL). NER refers to tagging named entities with their semantic
types, while CR and EL respectively refer to clustering coreferant mentions and linking them to
the corresponding KB entries (Pradhan et al., 2012; Ji et al., 2015; Ratinov and Roth, 2009). The
strong interdependence between these tasks can be seen in the following example:

“He left [Columbia] in 1983, ... after graduating from [Columbia University], he
worked as a community organizer in Chicago ...”

In this example, while it is difficult to identify the meanings of the first instance of [Columbia]
in isolation, it is straightforward to infer it from the second mention, once we have co-reference
information between the mentions, which follows from their proximity. In general, the three tasks
can benefit by mutually constraining each other, a fact that has been established in prior work
through joint graphical modeling (Durrett and Klein, 2014).

To simplify the entity analysis problem and make it easier to compare to prior work, we
assume the availability of extracted mentions for each document and all three tasks are applied to
the same sequence of mentions as input. The output of the three tasks has the same size, which
equals to the number of mentions. Note that our framework allows to include mention extraction
as another task, although it significantly increases the size of the multi-task output space.

Given a document x that consists of T mentions m1, m2, ...,mT in the textual order, we use
yc to denote the coreference resolution output, yn to denote the named entity typing output, and
yl to denote the linking output. The entity analysis output can be written as y = (yc, yn, yl). For
each sub-structure output yt, the interpretation of decision on a mention mi, denoted by yti , is as
follows:
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• Coreference decision yci ∈ {1 . . . i} represents an antecedent mention index j ≤ iwheremi

is coreferent to mj . When j = i, mi starts a new singleton cluster. Thus, each coreference
output forms a left-linking tree. Note that the left-linking tree is not unique for a given
coreference clustering.

• Entity Typing decision yni ∈ T is a semantic tag assigned to mi (T is a constant set).

• Entity Linking decision yli is a knowledge base entry e, from a heuristically generated
candidate set.1

In MTSP, we seek to learn an output scoring function S(x, y) which takes the form S(x, y) =

w · Φ(x, y). The joint input-output feature vector Φ(x, y) can be decomposed into two groups:
intra-task features, and inter-task features:

Φ(x, y) = Φ1(x, y1) ◦ · · · ◦ Φk(x, yk)︸ ︷︷ ︸
intra-task features

◦ · · · ◦ Φ(ti,tj)(x, yti , ytj ) ◦ · · ·︸ ︷︷ ︸
1st-order inter-task features

◦ · · ·︸︷︷︸
higher-order features

(4.1)

where Φt(x, yt) denotes intra-task features for the tth task, Φ(ti,tj)(x, yti , ytj ) denotes the first-
order inter-task features for tasks ti and tj , and ◦ stands for concatenation of features. Note that
we can easily add higher-order inter-task features as needed.

For our entity analysis problem, we employ c, n, and l to represent coreference, NER typing,
and linking tasks respectively. For the intra-task group, we aggregate the feature vectors for
individual tasks: Φc(x, yc) ◦ Φn(x, yn) ◦ Φl(x, yl). For the inter-task group, we only employ the
first-order inter-task features, and aggregate the feature vectors for all task pairs: Φ(c,n)(x, yc, yn)◦
Φ(c,l)(x, yc, yl) ◦ Φ(n,l)(x, yn, yl).

4.3 Search-based Learning Algorithms for MTSP

In this section, we present three different search architectures, pipeline, joint, and cyclic, with
varying speed and accuracy tradeoffs for solving MTSP problems. We first describe the details of
structured SVM training and search-based inference that is common to all three approaches, and
subsequently, explain the three architectures.

1In some datasets, we also employ a slightly different definition yli = (q, e), where the query q is a sub-span of mi,
and e is the KB entry that can be retrieved using q as keyword. A value (q, e) of yli is correct if e = e∗i . Since there
could be more than one q that can link to the same e, under this definition, yl∗ would also be non-unique.
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4.3.1 Structured SVM Training and Search-based Inference

The key idea is to learn a function to score the candidate outputs generated by beam search. We
employ SSVM approach for learning the scoring function due to its robustness (Kummerfeld et
al., 2015). The main advantages of search-based inference and training over graphical model
approach are: 1) enable the injection of procedural knowledge through the design of appropriate
search space; 2) delink the complexity of features from the computational complexity of inference;
and 3) let the user control the time for inference based on the application needs.

Algorithm 4 Structured SVM Training
Input: D, training examples,
Φ(x, y), joint feature function
Output: w, the scoring function weights

1: Initialization: active constraint set A← ∅
2: repeat
3: w ← batch optimization with constraints A
4: for each training example (x, y∗) ∈ D do
5: ŷ ← BEAM-SEARCH-INFERENCE(x,w)
6: if ŷ 6= y∗ then
7: Add constraint w · Φ(x, y∗) > w · Φ(x, ŷ) to A
8: end if
9: end for

10: until convergence
11: return weights of the scoring function w

4.3.1.1 Structured SVM Training.

Structured SVMs are a generalization of SVMs for standard classification. They learn a scoring
function of the form w · Φ(x, y) in order to rank the correct output y∗ above exponentially many
alternative candidate outputs y ∈ Y (x) \ y∗ for a training input x. SSVM employs the iterative
cutting plane algorithm to efficiently solve this optimization problem. The key idea is to maintain
a small set of active constraints A for tractability. It performs the following two steps in each
iteration: 1) Solves the optimization problem with constraints A; and 2) Adds a most violated
constraint for each training example to A. The training algorithm stops when no more constraints
can be added to A. To compute the most violated constraint for a training input x, we need to



37

search the space of candidate outputs Y (x) to find the best scoring output ŷ. We employ beam
search for this task.

Latent SSVM. Some MTSP problems have hidden structure which is not apparent in the inputs
and outputs, and may be represented by the latent variables h. For example, in coreference
resolution task, h corresponds to the left-linking tree, which represents, for each mention, one of
the previous mentions that belongs to the same cluster. Latent SSVM (Yu and Joachims, 2009)
extends SSVM for training with hidden variables using the Concave-Convex Procedure (CCCP).
The key idea is to use the current weights to perform a maximization over hidden variables (say
h∗) and use h∗ as the ground truth for training via SSVM training. These two steps are repeated
for some fixed number of iterations or until convergence.

4.3.1.2 Search-based Inference.

Our beam search inference procedure consists of the following components: 1) Search space; 2)
Beam width b; and 3) Number of search steps. The beam search is guided by a scoring function
of the form w · Φ(x, y) until it reaches a locally optimal state with output ŷ. (see Algorithm 5).

Algorithm 5 Beam Search Inference
Input: x: structured input, Φ(x, y): joint feature function, (I,Succ): search space definition,
b: beam width, w: weights of features
Output: ŷ, the best scoring output

1: Initialization: y0 = I(x) and Beam← {y0}
2: repeat
3: ŷ ← arg maxy∈Beam w · Φ(x, y) // Selection
4: Beam← Beam \ {ŷ} // Remove the node selected for expansion
5: Candidates← Beam ∪ Succ(ŷ) // Expansion
6: Beam← Top-b scoring outputs in Candidates // Pruning
7: until max steps or local optima is found
8: return best scoring output ŷ

Search Space. Each state in our search space is a partial (for pipeline approach) or complete (for
joint and cyclic approaches) multi-task structured output. The successor function Succ generates
a successor state by executing an action a(i, j, z), which indicates changing ith slot of parent
output y of task j to a new value z, where z 6= yji , z ∈ C(yji ), and retaining the values of all other
output variables unchanged. For both pipeline and cyclic architectures, we only consider changes
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to the output variables of a single task until it is finished (task j is fixed). On the other hand, for
joint architecture, we consider changes to all output variables of all tasks at every step, which
results in a large branching factor.

We design a simple, but effective search space to reduce the depth at which target outputs
can be found. To bootstrap the search, we initialize the search with the output obtained from
predictions of the i.i.d classifiers r1, r2, . . . , rk for the k structured prediction tasks learned using
only the unary features. The initial search state I(x) is equal to y0 = (r1(x), r2(x), . . . , rk(x)).
Intuitively, we expect that starting from the output of i.i.d classifiers will only need a small number
of corrections to reach the target output.

Beam Search Procedure. The beam is initialized with I(x), the output from i.i.d classifiers.
Each search step picks the best node in the beam according to the scoring function (selection),
generates all its successors by calling Succ function (expansion), and updates the beam with
the top-b scoring nodes in the candidate set (pruning), where b is the beam width. The search
continues until the maximum number of steps or a local optima is reached. Beam search is a
tradeoff between greedy (b = 1) and pure best-first search (b =∞) and maintains tractability in
terms of time and space to produce high scoring outputs.

4.3.2 Pipeline Architecture

The pipeline architecture requires an ordering over all the k tasks. Suppose Π denotes an ordering
over all the tasks, where Π(i) denotes the ith task in the order.

Model. We learn one modelMi (weight vector) to predict the output variables for task Π(i) in a
sequential manner.

Making Predictions. Given an input x and learned models (M1,M2, · · · ,Mk), we predict the
multi-task structured output as follows. Run beam search guided by M1 to predict ŷ1. For
predicting ŷi+1, we use the context of predictions ŷ1, ŷ2, · · · , ŷi, and perform beam search guided
by Mi+1 in the search space of candidate outputs for task Π(i+ 1).

Learning. We train the models M1,M2, · · · ,Mk sequentially as in stacking (Cohen and de
Carvalho, 2005) and forward training. Model M1 is trained such that for each training input x,
the score of the ground truth output y∗1 is higher than all other candidate outputs. We train model
Mi+1 conditioned on the outputs of the learned models M1,M2, · · · ,Mi with no sharing of
parameters. Specifically, for each training input x, the score of ŷ1, ŷ2, · · · , ŷi, y∗i+1 is higher than
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the score of ŷ1, ŷ2, · · · , ŷi, yi+1, where yi+1 is any wrong output for Π(i+ 1), and ŷ1, ŷ2, · · · , ŷi
correspond to the predictions of M1,M2, · · · ,Mi.

The training and inference in the pipeline architecture is very fast. However, it suffers from
two drawbacks that can be detrimental to overall accuracy: 1) its sensitivity to the the task ordering
Π, and 2) its susceptibility to error propagation.

4.3.3 Joint Architecture

In the joint architecture, we learn a single model (weight vector) to score a given structured input
x and candidate multi-task structured output y = (y1, y2, · · · , yk) pair. Given an input x and the
learned model, we predict the multi-task output by performing beam search in the joint search
space. Learning is performed similarly to the single-task structured prediction.

Motivation for Pruning. Our formulation of beam search for MTSP problems in joint architec-
ture suffers from a large branching factor, which is equal to the total number of output variables
times the number of candidate values. Specifically, the number of successors or branching factor
is O(kTd), where k is the number of tasks, T is the number of output variables, and d is the
average size of candidate value set C(yji ). For our entity analysis problem, k = 3 and T is the
number of mentions. The size of the candidate value set |C(yji )| is generally small for entity
typing (number of tags) and entity linking (number of candidate entries extracted from KB), but it
is very large for coreference resolution (all antecedent mentions: O(T )). For example, some large
documents typically contain 300 mentions with a branching factor larger than 9000 for all tasks
combined. We address this problem by learning pruning functions to create sparse search spaces.

Pruning Mechanism. The pruning method considers all candidate label changing actions A(I)

available at the initial search state and selects the top-scoring α |A(I)| actions Ap using a learned
pruning function P , where α ∈ [0, 1] is a pruning parameter. Only actions from Ap will be used
throughout the search process. This reduces the branching factor from |A(I)| to α |A(I)|, and can
significantly improve the speed of inference for small values of α. The key challenge is to learn
an effective pruning function that prunes all but α fraction of the actions, while still retaining
near-optimal solutions in its space.

Learning Choices. We can learn pruning function in two different ways. 1) Score-agnostic:
First learn pruning function P to create a sparse search space and then learn a scoring function
using the sparse search space created by the learned P . This approach will speed up both training
and test-time inference. 2) Score-sensitive: First learn the scoring function over complete search
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space and then learn a pruning function to retain or improve the accuracy of search with the
learned scoring function. The second approach will only improve the speed of test-time inference.
However, it might improve the accuracy over the complete search by pruning nodes where the
scoring function is inaccurate.

Pruning Function Learning. We formulate pruning function learning as a rank learning problem.
This allows us to leverage powerful off-the-shelf rank learning algorithms. Given the actionsA(I)

available at the initial search state, we consider any label changing action a ∈ A(I) that improves
the accuracy over the initial output as a good action; otherwise, it is a bad action. We assume
the availability of a feature function Ψ over state-action pairs. We define Ψ as the difference
between the features of child state and parent state: Ψ(a) = Φ(x, ychld)− Φ(x, yprnt). We study
the following two pruning approaches.

Algorithm 6 Score-Agnostic Pruning Function Learning
Input: D: training examples, α: pruning parameter
Output: P , action pruning function

1: Initialization: R ← ∅
2: for i = 1 to MAX do
3: for each training example (x, y∗) do
4: if i == 1 then
5: R ← R∪ { (GOOD(I) > BAD(I)) }
6: else
7: AP ← Top-α |A(I)| actions from A(I) scored using P // pruning action space
8: M ← GOOD(I) ∩ A−P // where we define A−P = A(I) \ AP
9: if M is not empty then

10: M ′ ← Top-|M | actions from BAD(I) ∩ AP scored using P
11: R ← R∪ { (M > M ′) }
12: end if
13: end if
14: end for
15: P ← RANK-LEARNER(R)
16: end for
17: return P

1. Score-Agnostic Pruning: We represent a bipartite ranking example in the form (Q > Q′),
which means that in the list Q ∪ Q′, every element in Q should be ranked higher than every
element in Q′. In the first iteration, we collect one bipartite ranking example of actions from each
MTSP training example: (GOOD(I) > BAD(I)), where GOOD(I) and BAD(I) refer to the
set of good and bad actions from A(I) respectively. The aggregate set of ranking examplesR is
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given to a rank learner to induce a pruning function P . Then a scoring function is trained in the
sparse space defined by Ap.

In subsequent iterations, we collect additional ranking examples based on the mistakes of the
current P on each MTSP training example. DefineA−p = A(I)\Ap, andM = GOOD(I)∩A−p .
We consider a ranking result ofA(I) as a mistake if M 6= ∅. Once there is a mistake, we collect a
new bipartite ranking example: (M > bottom |M | bad actions in Ap), and then add it toR. The
rationale is that we need to get the good actions in M into Ap, and we can do this with minimal
pair swapping by pushing the worst-scoring bad actions out of Ap. The pruning function P is
re-learned using the updatedR.

Algorithm 7 Score-Sensitive Pruning Function Learning
Input: D: training examples, α: pruning parameter, w: weights of the scoring function
Output: P : action pruning function

1: P0 ← Random function
2: for i = 1 to MAX do
3: Initialization: R ← ∅
4: for each training example (x, y∗) do
5: APi−1 ← Top-α |A(I)| actions from A(I) scored using Pi−1 // pruning action space
6: ŷi ← BEAM-SEARCH-INFERENCE(x,w,APi−1

) // do structured prediction
7: Mi ⊂ A(I) is the set of actions corresponding to the mistakes in ŷi
8: if Mi is not empty then
9: M ′i ←

⋃i
j=1Mj // avoid these actions

10: PREF ← GOOD(I) ∪ Top-(
∣∣APi−1

∣∣− |GOOD(I)|) actions from BAD(I) \M ′i scored
by Pi−1

11: R ← R∪ { (PREF > M ′i) }
12: end if
13: end for
14: Pi ← RANK-LEARNER(R)
15: end for
16: return PMAX

2. Score-Sensitive Pruning: In this case, we give the weights of the scoring function learned
in the complete search space as input to the pruning function learner. As before, the pruning
function is learned iteratively. Suppose Pi is the learned pruning function at the end of iteration i.
For input example x, we use ŷi to denote the prediction of search guided by the learned scoring
function in the sparse search space created by Api−1 , and Mi ⊆ A(I) be the set of actions
corresponding to mistakes (incorrect outputs) in ŷi. The key idea behind learning is to keep the
actions in

⋃i
j=1Mj outside Ap to improve the accuracy of search with scoring function. We
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initialize P0 to a random scoring function. In each iteration i, we initialize ranking example
set R = ∅. Let M ′i =

⋃i
j=1Mj . For each MTSP training example, if Mi 6= ∅, we create one

bipartite ranking example as follows. To the actions in GOOD(I) we add the top few actions in
BAD(I)\M ′i according to Pi−1 to get a set GOOD′ which is no larger thanApi−1 . We then add
the example GOOD′ > M ′i toR. The pruning function Pi is learned using ranking examplesR
at the end of iteration i.

4.3.4 Cyclic Architecture

The cyclic architecture lies in between pipeline and joint architectures in terms of the overall
complexity. It retains the efficiency of pipeline architecture by focusing on one task at a time,
but tries to avoid its weaknesses of dependence on task order and error propagation by cycling
through the tasks mutiple times.

Model. We learn one modelMi (weight vector) to predict the output variables for task Π(i) in a
sequential manner.

Making Predictions. Given an input x and learned model (M1,M2, · · · ,Mk), we predict the
multi-task structured output as follows. We initialize the output of all k tasks using i.i.d classifiers
(say y(0)). We perform sequential inference using the models until convergence (multi-task
output does not change in two consecutive cycles) or for maximum number of cycles. In each
cycle, we make predictions for tasks in the same order as Π via beam search using the most recent
predictions for all other tasks as context.

Learning. We train the models M1,M2, · · · ,Mk sequentially as in the pipeline architecture with
two differences: 1) The model for each task is trained conditioned on the most recent model (or
i.i.d classifier) for all the other tasks; and 2) The training process is repeated for a fixed number of
cycles to further improve the models. The number of training cycles are determined based on the
performance on development data.

We explored two different versions of the cyclic architectures. In one, there is a single set of
shared weights for all tasks. In the second, each task has its own set of weights even for shared
inter-task features. While sharing weights could improve statistical efficiency, it also results in
reduced expressiveness which is sometimes detrimental to accuracy.
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4.4 Experiments and Results

We evaluate our approach on two annotated datasets, ACE 2005 corpus (NIST, 2005) and TAC-
KBP 2015 Entity Linking corpus (Ji et al., 2015), on three entity analysis tasks: named entity
recognition, coreference resolution, and entity linking. For both corpora, we first report the
results of learning and inference using the complete search spaces, and show that we can achieve
comparable or better performance than state-of-the-art approaches. Next, we present the results
for pruned and cyclic architectures to show the improvements in speed and accuracy.

4.4.1 Experimental Setup

Datasets. ACE 2005 corpus contains 599 English documents. We follow the same setting as
(Durrett and Klein, 2014) to make a train/dev/test split of 338/144/117, so that all the results
are comparable. The original ACE 2005 has included the gold annotation for coreference and
NE types, but does not contain the entity linking annotation. In order to do entity linking model
training and evaluation, we add ACE-to-Wiki annotation (Bentivogli et al., 2010) to the corpus.
Therefore, the linking task on ACE 2005 will use Wikipedia as the KB. TAC-KBP 2015 Entity
Linking corpus is released for TAC-KBP 2015 Tri-lingual Entity Discovery and Linking (TEDL)
task (Ji et al., 2015).

Evaluation Metrics. The ACE 2005 evaluation follows the standard metrics for each task.
Coreference results are evaluated using MUC, B3, CEAFe, and the average of these three metrics
called the CoNLL metric (Pradhan et al., 2012). We employed the official CoNLL scorer to
compute scores. For NER typing, results are scored using Hamming accuracy. We evaluate the
entity linking result on overall accuracy, which is just the percentage of mentions that are linked
correctly. Note that for entity linking in ACE 2005, only the proper and nominal mentions will be
considered because ACE-to-Wiki annotation does not include pronouns.

Following the TAC-KBP EL evaluation procedure (Ji et al., 2015), the metrics for scoring
typing and linking are the same as ACE 2005. Additionally, the competition also computes a
score called NERLC, where a decision is scored correct if both the mention’s type and its linked
KB ID are correct. The clustering is evaluated by cross document CEAFm (Luo, 2005). We also
report the within document coreference scores using the same metrics as ACE 2005 (NIST, 2005).
Note that the TAC competition not only requires the system to link each mention to its correct KB
ID entry when it exists, but also to cluster the NIL mentions (mentions without links) according
to their coreferent similarities. We employ a simple rule-based agglomerative clustering approach
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similar to the Stanford multi-sieve system to perform NIL clustering (Lee et al., 2011). All the
reported scores are computed through the official scoring script. For all the three tasks, we assume
that the gold mention boundaries are given.

System Implementation Details. Our entity analysis system is developed based on Berkeley-
Entity-Resolution system (Durrett and Klein, 2014). We replace the learning and inference
components with our search-based structured prediction approach. For the experiments on ACE
2005, documents are preprocessed using OpenNLP-tokenizer and Berkeley-Parser. For TAC-KBP
2015 corpus, we employ StanfordCoreNLP pipeline to do all the pre-processing.

We employ Illinois-SL (Chang et al., 2015b) structured learning library for latent SSVM
training with maximum number of CCCP iterations set to 10. The scoring function is trained to
optimize the Hamming loss. For named entity typing and entity linking, the Hamming loss is
simply the classification error over all mentions, while for coreference, we compute the Hamming
loss using the proportion of mentions with the wrong left-linked antecedent (i.e. inconsistent with
the ground truth clustering). For pruning function learning, we employed XGBoost (Chen and
Guestrin, 2016) library to learn boosted regression trees with pairwise ranking loss as our training
objective. The learning algorithm for pruning is run for 5 iterations. All hyper-parameters are
tuned using the development data.

Before running our system for entity linking, two prerequisite models need to be prepared.
First is the scored lookup table µ : q → E for candidate generation. Our system assumes that the
candidate KB entries of mentions are generated before doing the joint learning or inference. Our
candidate generation system takes a mention span sm as input, generates a query set Q(sm) by
taking its substrings or expansions, probes µ for each q ∈ Q to get scored candidate entity set Eq,
and finally, returns top-L scored candidates among

⋃
QEq. The score of each query-entity pair,

denoted by g(q, e), is the weighted sum of number of times the map q → e appeared in titles and
hyperlinks in the entire KB. Besides candidate generation, our TAC linking feature also requires
mention and entity embeddings for computing similarity. Similar to the Alignment by Anchor
model of (Wang et al., 2014), we learn word, mention and entity embeddings by applying the
skip-gram model (Mikolov et al., 2013) to the training set created from the English Wikipdia
corpus after modifying them by adding the anchor text and anchor entity to the words in the
sentences.
Features. Recall that the joint feature vector in Equation 4.1 consists of the intra-task and
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inter-task features. This can be further decomposed as follows:

Φ(x, y) = Φc(x, yc) ◦ Φn(x, yn) ◦ Φl(x, yl) ◦
∑
i

φ(c,n)(mi,mj , y
n
i , y

n
j ) ◦∑

i

φ(c,l)(mi,mj , y
l
i, y

l
j) ◦

∑
i

φ(n,l)(mi, y
n
i , y

l
i), where j = yci (4.2)

where φ(t,t′) is the inter-task feature extracted from a mention or a coreferent mention pair and its
corresponding predictions of tasks t and t′. The sums are vector sums over all mentions mi, and
since all mention pair interactions are confined to left links, j = yci .

For ACE 2005 corpus, we follow the same feature design as the Berkeley system (Durrett and
Klein, 2014) for both intra and inter task features. We define φc(m′,m) as the intra-coreference
features over mention pair, and φn(m, τ) and φl(m, e) as unary intra NER and linking features
between mention m and its corresponding tag and KB entry. Since we treat a query-entry pair
(q, e) as one value in our formulation, φl(mi, e) is just the concatenation of the feature vector
over (mi, q) and the vector over (q, e) in the Berkeley system.

For TAC-KBP 2015 corpus, we employ the same features as ACE 2005 for φc, φn, and φ(n,c).
For linking, we drop the query variable, and instead use a learned embedding space to compute
the cosine similarity between a mention and a KB entry, and employ this distance as one of the
features. We re-design features φl, φ(c,l), and φ(n,l) as follows:

• φl(mi, e) includes CandidateGenScore and CosineSimilarity which represent
similarity scores between mi and e computed using a heuristic function or through the
mention-entity embedding; ExactMatch, SubString, and SameInitial which
capture surface similarities; and HashDescrip, HasType, and HasWebsites that
indicate how informative e is;

• φ(c,l)(mi,mj , y
l
i, y

l
j) includes SharedRelatedWebsite, SameKBIDSameFreebaseType,

and SameKBID which use the properties of linked KB entry of each mention to measure
the coreference consistency between mi and mj .

• φ(n,l)(mi, y
n
i , y

l
i) includes NerFreebaseTypePair and NerFreebaseParentTypePair,

which model a weighted soft map from the assigned Freebase type and its parent type in
Freebase type system of mention mi to the NER types.

Hyper-parameters. In scoring function learning, the C parameter in the latent SSVM model
was tuned using the average hamming accuracy over all tasks on the development set, and was set
to be 0.0001 for both corpora, and fixed in all the experiments. In pruning function learning with
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XGBoost, we set the maximum tree depth to be 20, and maximum boosting iterations to be 500.
The pruning parameter α was selected based on the performance on development set.

4.4.2 Beam Size Analysis

We considered candidate beam widths b from {1, 5, 10, 20, 40, 60}. We performed experiments
over development set of the two datasets in the complete search space with different b values.
Results in Figure 4.1 show that larger beam size is useful in overcoming the local optima challenge,
but improvement becomes small when b is larger than 20. We conservatively fixed b = 40 for all
our experiments and other hyper-parameters are tuned accordingly.
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Figure 4.1: ACE 2005 and TAC-KBP 2015 Dev Set Performance with different beam sizes.

4.4.3 Results for Single-Task Structured Prediction and Pipeline

Architecture

One simple approach to handle multi-task structured prediction problems is to perform stacked
training and inference, where the output of one task is fed as input to provide context for solving
the next task in the pipeline (Cohen and de Carvalho, 2005; Ross and Bagnell, 2010). However, the
pipeline approach requires an ordering of the tasks, which may be hard to fix without significant
domain knowledge. Therefore, we considered all possible orderings over the tasks (6 for 3 tasks)
in our experiments. We refer to the three tasks as CR, NER, and EL. All the results above will
also be compared with the single-task structured prediction (STSP) approach, where each task is
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solved independently.

ACE 2005 Test TAC-KBP 2015 Test
Algorithms Coref. NER Link NER Link NERLC w.in Coref.

STSP 75.04 82.24 75.35 87.30 76.20 70.90 81.21
CL→NER→EL 75.04 83.41 77.15 87.90 76.10 71.22 81.21
CL→EL→NER 75.04 85.27 74.64 86.80 75.70 70.71 81.21
NER→CL→EL 76.20 82.24 77.23 87.30 76.50 71.33 82.47
NER→EL→CL 76.50 82.24 76.77 87.30 74.90 69.96 82.62
EL→NER→CL 76.66 84.77 75.35 87.10 76.20 71.01 81.38
EL→CL→NER 76.08 85.08 75.35 88.20 76.20 71.89 79.89

Table 4.1: ACE 2005 and TAC 2015 Test Set Performance with different pipeline orderings.

Table 4.1 shows the results of the pipeline approach with different task orderings and the
STSP approach. We can make two observations. First, the performance of the tasks is better
when they are placed later in the ordering. It is especially true for NER and EL tasks. This shows
that dependencies between tasks exist and can be leveraged to improve the performance. Second,
there is no ordering that allows the pipeline approach to reach peak performance on all the three
tasks. This is due to the inherent limitations of the pipeline approach: mistakes in earlier tasks can
hurt the performance of downstream tasks, and the architecture does not allow to revisit/correct
predictions based on additional evidence(s). These observations corroborate that a more global
learning/inference approach may do better than both pipeline and STSP approaches.

4.4.4 Results for Joint Architecture without Pruning

In this section, we report the results of our entity analysis system with beam search in the complete
search space. Tests using the paired bootstrap resampling approach indicate that the performance
differences we observe are statistically significant in all three tasks.

Table 4.2.a shows the performance on ACE 2005 testing set for all 3 tasks. Berkeley
(Durrett and Klein, 2014) is our baseline result. STSP is the result without using inter-task
features. Joint-Rand-Init and Joint-Good-Init are the results of joint search-based
architecture with random initial state and the output of STSP respectively. We can draw three
conclusions from this table. First, the difference between STSP and Joint-Good-Init shows
that exploiting the interdependency between the tasks, which is captured by inter-task features,
does benefit the system performance on all tasks. Second, we can see that Joint-Good-Init
significantly outperforms Joint-Rand-Init, which shows that search-based inference for



48

Algorithm Coreference NER Link Train
MUC BCube CEAFe CoNLL Accu. Accu. time

Berkeley 81.41 74.70 72.93 76.35 85.60 76.78 31min
a. Results of Joint Architecture without Pruning

STSP 80.28 73.26 71.58 75.04 82.24 75.36 9min
Joint w. Rand Init 80.23 73.79 72.03 75.35 82.20 76.99 48min
Joint w. Good init 82.18 76.57 74.00 77.58 85.71 78.77 34min

b. Results of Joint Architecture with Pruning
Score-agnostic 81.10 75.79 74.33 77.07 85.63 78.71 16min
Score-sensitive 82.81 75.77 74.96 77.85 87.18 80.28 37min

c. Results of Cyclic Architecture
Unshrd-Wt-Cyclic 81.83 76.05 73.99 77.29 84.18 80.67 11min
Shared-Wt-Cyclic 80.97 75.22 73.39 76.53 82.16 79.60 10min

Table 4.2: ACE 2005 Test Set Performance.

large structured prediction problems suffers from local optima and is mitigated by a good
initialization. Finally, our search-based MTSP predictor is competitive or better than the state-of-
the-art system for entity analysis.

Algm. NER2 Link NERLC Within. Coref Crs.Crf Trn.
Accu. Accu. Accu. MUC BCub CEAFe CoNLL CEAFm time

Rank-1st 87.0 - 73.7 - - - - 80.0 -
Berkeley 88.90 74.80 72.80 86.02 83.66 79.27 82.98 80.8 6m29s

a. Results of Joint Architecture without Pruning
STSP 87.30 76.20 70.90 84.29 82.04 77.30 81.21 78.8 2m41s

Joint Rnd. Ini 87.10 71.17 68.33 84.34 82.14 77.45 81.31 78.4 7m19s
Joint Gd. Ini 89.72 76.98 74.43 85.87 83.48 79.05 82.80 81.3 6m11s

b. Results of Joint Architecture with Pruning
Score-agnostic 89.54 76.84 74.31 85.57 84.04 79.38 82.99 81.4 4m15s
Score-sensitive 89.33 77.68 74.63 86.08 84.20 79.22 83.17 81.3 9m2s

c. Results of Cyclic Architecture
Ushrd-Wt-Cyc 89.57 77.68 74.60 84.97 83.08 78.18 82.08 80.5 3m52s
Shard-Wt-Cyc 87.95 73.65 71.32 82.67 81.09 77.86 80.54 77.9 2m56s

Table 4.3: TAC-KBP 2015 Enitiy Linking Test Set Performance.

Table 4.3.a presents our results on TAC-KBP 2015. In this table, we add one more baseline
Rank-1st (Ji et al., 2015), which is the best performing system in TAC-KBP 2015 EL competi-
tion. The NERLC is the official joint metric of entity linking and NER typing performance, and
CEAFm is the official metric for clustering (Ji et al., 2015). Again, our joint system outperforms

2corresponds to NERC metric in the official report.
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both baselines by at least 1%, and the results show the same trend as ACE 2005. If we compare
the difference between the Link and NERLC, we can see that, STSP loses 6% accuracy from
Link to NERLC, while both joint runs only drop less than 2% accuracy. These differences show
the importance of the joint architecture and the inter-task features.

4.4.5 Results for Joint Architecture with Pruning

In this section, we report the results of our entity analysis system with beam search in the pruned
search space.

Table 4.2.b and 4.3.b show a comparison of test results with and without pruning for both
corpora. Score-Agnostic corresponds to the result of learning the pruning function before
learning the scoring function. Score-Sensitive is the result of learning the pruning func-
tion based on the scoring function. By comparing these tables with part (a), we can see that
Score-Agnostic achieved a competitive performance with Joint-Good-Init in about
half the training time. Furthermore, Score-Sensitive has outperformed Joint-Good-Init,
which shows that a score-sensitive pruner could correct mistakes of the scoring function, and
bring potential accuracy improvements.

Score-agnostic Pruning. Table 4.4 is a study of how the accuracy and training time would
change with respect to the pruning parameter when a pruner is learned before the scoring function.
As the table shows, when α becomes larger, the development set performance gradually recovers to
the level of no-pruning performance, while the training time increases gradually. The performance
loss with small α is mainly caused by the recall loss during the pruning.

Score-sensitive Pruning. Table 4.5 shows the results of applying the pruner learned with
different α’s after the cost function was learned on the development sets. As α increases, the
performance of the three tasks goes up to a maximum, and then slowly goes down. On ACE
2005 and TAC 2015, these optimal points are reached at α = 0.6 and α = 0.7 respectively. By
carefully adjusting α, the pruner would become tuned to the scoring function, and improves
performance.
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Prn. ACE05 Dev TAC15 Dev
α Hamm. Trn.Tm Hamm. Trn.Tm

0.3 86.53 11m 75.21 2m11s
0.5 90.83 16m 77.27 3m08s
0.7 90.80 22m 80.60 4m15s
0.9 90.67 29m 80.40 5m44s
1 90.58 34m 80.47 6m11s

Table 4.4: ACE 2005 and TAC 2015 Dev Set
accuracy w.r.t. α with score-agnostic pruning
function. α starts from 0.3 because this prun-
ing learning requires α|A(I)| > |GOOD(I)|
on average over training set.

Prn. ACE05 Dev TAC15 Dev
α Hamm. Tst.Tm Hamm. Tst.Tm

0.1 81.61 45s 75.61 31s
0.3 87.29 1m17s 78.33 48s
0.5 89.15 1m58s 79.79 1m02s
0.6 90.80 2m10s 80.51 1m15s
0.7 90.78 2m17s 80.83 1m41s
0.9 90.62 2m25s 80.66 1m55s
1 90.58 2m44s 80.47 2m05s

Table 4.5: ACE 2005 and TAC 2015 Dev Set
accuracy w.r.t. α with score-sensitive pruning.

4.4.6 Results for Cyclic Architecture

Table 4.2.c and 4.3.c show a comparison of test results of the two cyclic training approaches on
both corpora. Unshared-Wt-Cyclic and Shared-Wt-Cyclic correspond to the cyclic
training method with 3 different task-specific weight vectors and with one single weight vector,
respectively. We tune the parameters (training cycles and task ordering) according to the overall
hamming accuracy on development set.

ACE 2005 Dev Set
Cycle task Unshared-Wt-Cyclic Shared-Wt-Cyclic
orderings Coref. NER Link Coref. NER Link

CL→NER→EL 76.63 84.24 80.06 72.01 82.94 77.30
CL→EL→NER 76.66 84.54 80.01 73.20 84.87 76.17
NER→CL→EL 77.14 84.32 79.93 75.89 83.45 77.29
NER→EL→CL 77.20 84.14 80.00 74.95 83.03 72.39
EL→NER→CL 76.64 84.16 80.21 75.24 84.18 75.21
EL→CL→NER 77.19 84.32 80.08 76.08 84.16 73.43

Table 4.6: Unshared-Wt-Cyclic and Shared-Wt-Cyclic performance on ACE 2005 Dev w.r.t. task
orderings.

Unshared-Wt-Cyclic can reach a comparable performance to Joint-Good-Init

on coreference and linking, but is slightly weaker on NER. Shared-Wt-Cyclic performs
worse than Unshared-Wt-Cyclic, especially on NER. Importantly, both cyclic architectures
have a big advantage in training time, even compared to the joint architecture with pruning. In
each task of each cycle, they only perform training and inference on a single task, which is of
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similar time complexity to STSP. The search in STSP is faster than joint architecture due to
reduced branching factor as well as search depth.

As can be seen in Table 4.6, Shared-Wt-Cyclic does not perform as well as
Unshared-Wt-Cyclic. This is because when the different tasks share one weight vector, the
inter-task features of the weights are updated in two different task stages in each cycle. When the
optimal weights for each task are slightly different from the other task, the latter task overwrites
the former task’s learned weights, and vice versa, thus undermining each other. As a result, only
the last task in the ordering can fully exploit the inter-task features.

To verify our hypothesis, we present the ACE05 dev scores of the two algorithms in ta-
ble 4.6. Each row corresponds to one task ordering. It is easy to observe that compared to
Unshared-Wt-Cyclic, in Shared-Wt-Cyclic columns only the last tasks perform rela-
tively well, while the first task can only reach a score slightly better than the initialization.

In our cyclic approach, there is no need to restrict the testing cycle number to be exactly the
same with the the training cycle number. To determine the proper number of testing cycle number,
we did a study in which we plotted the testing accuracy on dev set with different test cycles using
the current cyclic model. Our study shows that for both datasets, and in all task orderings, the
best accuracy can be reached after 3 to 4 cycles, and is stable afterward. In testing, since there is
no disadvantage for increasing the number of cycles, we can do as many cycles as there is time
for. We stopped the cycles once more than 95% of the predicted outputs did not change in the last
two cycles.

In Figure 4.2 we present the overall hamming accuracy w.r.t. the number of training cycles
for Unshared-Wt-Cyclic. The accuracy at the 0th cycle is computed from initial outputs.
The figure shows that, for both datasets, our cyclic training approach can continuously improve
the accuracy in the first 2 to 4 cycles, regardless of task ordering. However, unlike during the
testing phase, too many training cycles could lead to overfitting. We selected the best number of
training cycles using the development set performance.

4.5 Summary

We studied the problem of multi-task structured prediction (MTSP) in the context of entity
analysis of natural language text. We developed a search-based learning framework, where we
employed structured SVM for training and beam search for inference. To improve the efficiency
of training and test-time inference, we learned pruning functions to create sparse search spaces.
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Figure 4.2: Hamming accuracy on ACE05 (up) and TAC15 (down) Dev set w.r.t. Unshred-Wt-
Cyc training cycles.

Our joint search architecture improves on both accuracy and speed over the state-of-the-art
graphical modeling approach. We also explored a cyclic architecture which is highly efficient and
is competitive with the joint search.
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Chapter 5:HC-Nets: A Framework for Search-based Deep Structured

Prediction

The recent success of deep learning has proved the power of deep neural network models. A
standard approach of structured prediction is to learn a scoring function F (x, y) to score a
candidate structured output y given a structured input x. The non-linear deep neural network
model provides a stronger representation power for F (x, y) than a linear function, and therefore
makes it possible for the model to distinguish ground truth y∗ from other outputs to achieve
higher accuracy. Prior works (Belanger and McCallum, 2016; Belanger et al., 2017; Gygli et al.,
2017; Tu and Gimpel, 2018) have shown that the incorporation of DNN models improves the
state-of-the-art performance of structured prediction on a variety of application domains.

However, applying deep learning in structured prediction also faces some challenges. The
first challenge is to ensure the stability and robustness of training and inference. Existing works
use gradient-based inference to compute the argmax, which brings up several potential issues.
To perform gradient-based inference, one needs to do relaxation over the output to continuous
space, and then run gradient descent to get the prediction result. This procedure requires a
very careful tuning of parameters, including the initial output, the step size, and the number of
steps. Once the gradient descent was done, a rounding threshold is also required to cast the real
valued output back to discrete space. These large number of interdependent parameters makes
the gradient-based inference extremely difficult to implement and debug over different problem
domains. Moreover, the relaxation of output to continuous space brings difficulties to enforce
domain-specific constraints. (Lee et al., 2019) relies on Lagrangian multiplier in the objective to
perform the constrained optimization, which further adds to the complexity of implementation.

To deal with the challenges above, and leverage the advantages of both deep learning and
search-based approaches in structure prediction, we combined the two to propose a new approach:
HC-Nets. Referring to Table 2.2, we are trying to fill in the right-down cell with this approach. In
HC-Nets framework, we formulate structured prediction as a complete and discrete output space
search problem. We choose complete output space instead of partial output space for several
reasons. First, some loss functions are non-decomposable, and are only applicable when both the
predicted and the ground truth complete outputs are available, e.g., example-based F1 score. A
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complete output would be essential for optimizing such a loss. Second, the partial output space
does not have the anytime property, thus it cannot perform the coarse-to-fine inference given
more time. Finally, in most applications, to control the branching factor (so that the search speed
can be significantly improved), the partial output space explicitly defines an ordering of output
predictions, which might limit the flexibility of the search. Moreover, the discrete output space
makes the incorporation of prior knowledge constraints straightforward. Any output state that
violates the hard constraints will be pruned off during the successor generation step in search.

The inference procedure ofHC-Nets consists of two stages: generation and selection. The first
stage is generation step, where the greedy search is performed to uncover candidate outputs. The
next stage is selection, where the best output is picked from the generated candidates. To guide the
search, we employ two neural network functions: a heuristic networkH for the generation stage
and a cost network C for the selection stage. The decomposition of heuristic and cost functions
makes the representation more expressive and learning more modular. To learn the functionsH
and C, we developed a stage-wise training algorithm. Our learning ofH is inspired by imitation
learning, of which the target is to guide the search to execute the correct action at each search step,
so that the search could uncover a set of high-quality outputs. The goal of C learning is similar to
do ranking over the generated outputs, so that true best output can be chosen during the selection.

We evaluate our approach on three tasks: multi-label classification, handwriting recogni-
tion and semantic segmentation. Our experimental results show that HC-Nets achieves better
performance than prior methods on all three benchmark domains.

5.1 Related Work

The success of deep neural network models brings new opportunities to solving structured
prediction problems. Structured prediction is especially important in deep learning because deep
models are sample inefficient and structure is an effective way to constrain learning without using
large amounts of training data (Liang et al., 2008). Therefore, it is beneficial to integrate the
advances in deep learning with structured prediction frameworks. Different instantiations of deep
learning methods in SP incorporate ideas from both cost and search based learning approaches
(Deshwal et al., 2019).

Consider C(x, y) as a general cost (also referred as score or energy) function, where x
is a structured input and y is a candidate structured output for x. C(x, y) typically consists
of a combination of multiple local potential functions, i.e., functions defined over subsets of
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input/output variables. Classical deep networks allow us to learn complex unary features over
structured input variables. In decoupled integration, we can employ the unary features learned
from deep networks into existing structured prediction methods (Huang et al., 2015).

To leverage structural dependencies, auto-regressive models including recurrent neural net-
works (RNNs), long short-term memory networks (LSTMs), and attention networks (Sutskever
et al., 2014; Kim et al., 2017) order the output variables and predict one variable at a time
conditioned on the previous variables. This ordered sequence of output variables is typically
generated using a decoding procedure based on greedy search or beam search. During the training
phase, prediction of each variable is conditioned on the ground truth values of the previous
output variables. As a result, the model is never exposed to its own error during training. This
phenomenon is referred as exposure bias problem. To overcome this challenge, prior work
has leveraged the general ideas from search-based methods. For example, LaSO approach is
leveraged for beam search decoding (Wiseman and M. Rush, 2016) and advanced imitation
learning methods are leveraged for greedy decoding (Bengio et al., 2015). Another challenge with
auto-regressive models is the mismatch between training loss (e.g., token-level cross entropy)
and task loss defined over complete structure (e.g., BLEU score in translation). Reinforcement
learning (RL) methods are employed with greedy decoding (Ranzato et al., 2016) to alleviate this
challenge by training over entire structure using the task loss as a reward function. Recent work
presented a unified framework of training via both token-level maximum likelihood principle and
RL (Tan et al., 2019).

The two above-mentioned approaches employ a very simple form of structure among the
output variables to learn representations: no dependency structure between output variables
in decoupled integration and linear ordering among output variables in search-based learning.
Therefore, these methods impose excessively strict inductive bias. To overcome these drawbacks,
recent work explored tight integration of deep models with existing cost function learning
approaches. Deep SP framework replaces clique potentials of conditional random fields with
a deep network and approximates the partition function with loopy Belief Propagation (Chen
et al., 2015). Structured prediction energy networks (SPENs) framework allows us to learn a
non-linear cost function over structured input-output pairs in the structured SVM training regime
(Belanger et al., 2017). SPENs fall within the general framework of energy-based learning
(LeCun et al., 2006). Deep value networks (DVNs) learn a non-linear regressor to approximate
the negative loss value of a candidate structured output (Gygli et al., 2017). Both SPENs and
DVNs employs gradient-based inference in the relaxed continuous space. Approximate inference
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networks (InfNet) method (Tu and Gimpel, 2018) employs an additional trained deep neural
network to directly produce the output of inference problem with a given cost function. A recent
work developed a generalization of SPENs with improved results (Graber et al., 2018) .

Some important challenges for methods that integrate deep models for structured prediction
are as follows. a) Incorporating constraints: Many SP tasks require the structured outputs to
satisfy some constraints (e.g., valid trees in parsing). Incorporating these constraints is a major
challenge for methods that perform gradient-based inference and learning (Lee et al., 2019).
These constraints can be classified into three main categories: relational, logical, and scientific.
Relational constraints enforce simple relations among entities which can be specified manually or
mined from large amounts of unstructured text available on web. Logical constraints occur in
domains where structured output variables are related by logical propositions (Xu et al., 2018).
Little attention has been paid to scientific constraints which require the predicted outputs to satisfy
the true dynamics of our world based on physics (Stewart and Ermon, 2017). These constraints
can also be thought of as prior knowledge for DL models and can improve their sample-efficiency.
b) Stability and Robustness: The training of DL models in SP is prone to instability as discussed
in earlier version of SPENs. Training of SPENs was improved (Belanger et al., 2017), but this
approach is prone to over-fitting. In our own experience, performance of DVNs is very sensitive
to the parameters of gradient-based inference. Deep SP with non-linear output transformations
approach (Graber et al., 2018) doesn’t support variable length structured outputs yet.

5.2 HC-Nets Framework

5.2.1 HC-Search Framework for Structured Prediction

HC-Nets is an instantiation of HC-Search (Doppa2014) with deep neural heuristic and cost
functions. To apply theHC-Search, one needs to formulate the original problem as a state-space
search problem. Most important elements of this formulation are included in search space design.
For example, how to represent an output as search state, how an action could change a state, and
what constitute initial and terminal states. We introduce more details in the next subsection.

The inference inHC-Nets is exactly the same as the search procedure ofHC-Search. Different
from the other searched-based SP algorithms which employ only one scoring function,HC-Search
uses two learned functions: a heuristic functionH and a cost function C. The standardHC-Search
framework decomposes the structured prediction problem into three steps: 1) Find an initial
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complete output; 2) Explore a search tree of alternative candidate outputs rooted at the initial
solution; and 3) Score each of these candidates to select the best one. Algorithm 8 combines these
three steps in one search procedure.

Algorithm 8 Greedy Search Prediction withHC-Nets
Input: x, structured examples input
H(x, y), heuristic network; C(x, y), cost network
〈Succ, I, T 〉, predefined search space, where I is initial state generator, T is terminal criteria and
Succ() is successor function

1: B ← ∅
2: ylast ← I(x) // compute initial state output
3: ybest ← ylast
4: repeat
5: B ← SUCC(ylast) // expand the current state
6: ylast ← argminy∈BH(x, y) // decide which state to expand in next step according to H
7: ybest ← argminy∈B C(x, y) // update the best output according to C
8: until terminal criteria T(x, y) was satisfied
9: return ybest

HC-Search enjoys several advantages compared with other search-based approaches. First,
in the standard approaches a global cost function must be trained to “defend against” the
exponentially-large set of all wrong candidate outputs to the problem. This is expensive both
computationally and in terms of sample complexity. It can require highly expressive representa-
tions (e.g., higher-order potentials). In contrast, the heuristic functionH only needs to correctly
rank the successors of each state that is expanded during the heuristic search in Step 2, and the
cost function C only needs to correctly find the best of these in Step 3. These are much easier
learning problems, and hence, simpler potential functions can be applied. Second, for making
predictions there is no need to solve a global optimization problem at prediction time. In effect,
the system learns not only how to score candidate solutions but also how to find good candidates -
it learns to do inference more efficiently. Third,HC-Search can be applied to non-decomposable
loss functions. This is another advantage of using a search space formulation.

5.2.2 Search Space Design

Besides the search algorithm, a design of the search space is needed to formulate a structured
prediction problem as state-space search. A search space explicitly defines all the key elements
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of search procedure. The search space consists of a tuple 〈S,A, Succ, I, T 〉, where S denotes
the search state. In most of applications, at the minimum a state contains an input-output pair
(x, y). A and Succ are respectively the definitions of action space and the successor function
that controls the expansion of the search tree. I denotes initial state, which determines where the
search tree starts, and T denotes the terminal state or terminal criteria, which decides when to
stop the search. We introduce each elements in detail in the following.

Search State. A search state is a representation vector of a structured input-output pair, denoted
by (x, y). It usually consists of two parts: one representation vector for the input x, and another
for the output. Since we are searching a complete output space, the structured output would be
fully labeled. We use yi to denote the label of ith variable in y. Assume that |y| = T and let
yi ∈ V , where V is a discrete set of all possible values yi can take. In most problems, V is a
constant set with a fixed size, say |V | = N . We construct the output vector in two steps. First, for
each yi we use a length N one-hot binary vector to represent yi. For example, if V = {0, 1, 2, 3},
and yi = 2, then the corresponding one-hot vector would be (0, 0, 1, 0). Second, we concatenate
the one-hot vectors of all yi from i = 1 to i = T , and get a binary vector with length NT as the
output representation. Concatenating the input and output vector, we got the representation of
current search state.

Previous work has employed the gradient-based inference in structured prediction inference.
Gradient based inference first relaxes the output representation from discrete space to continuous
space. For instance, while originally yi ∈ {0, 1}, we now allow yi ∈ [0, 1]. Given an inference
learning rate, the inference algorithm will run gradient ascent algorithm for a fixed number of
steps using scoring function as a heuristic. During training, the relaxed output is directly used
in computing the score and the weight update. In testing, this output will be rounded off and
returned as the final result.

This inference approach raises a question: Is continuous or discrete representation better for
neural network cost function learning? Intuitively, continuous representation provides richer input
information for the network model. On the other hand, discrete space has its own advantages.
First, in testing it does not need any rounding, which requires an additional rounding threshold
parameter. Second, it is straightforward to define any hard constraints over the output. Finally, for
a search-based approach, it is very easy to design actions to make changes over a discrete vector.
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Action Space. In this work we will use the Flipbit search space since it is simple and straight-
forward to implement. In the standard flipbit search space, each action will pick only one variable
in the output, and change its label from current one to an alternative value. We use the notation
(yi → z) to denote an action a, which means to change the ith variable in y to a new label z. In
order to add more flexibility to the search, we extend this action from “change only one variable”
to “change at most k variables”, and name it k-Flipbit search space. More formally, an action
in k-Flipbit is a set of pairs rather than a single pair. a′ = (yi1 → z1), · · · , (yik → zk), where
|a′| = k. Each pair corresponds to one label change. Executing a′ is equivalent to making changes
on y according to each tuple in the set.

Figure 5.1: An example of action in k-Flipbit search space where k = 3.

Successor Function. Given a state, the successor function will generate new states by executing
an action on the current state. To expand the search tree, the successor function will generate all
possible actions for input state first, and then executes each action on current state to get a new
state. Assume that current state is (x, y), and we want to choose k′ labels in y to make changes.
There are

(
T
k′

)
possible ways to choose the k′ labels. For each label there are N − 1 alternative

values. So the total actions to make k′ changes are (N − 1)i
(
T
k′

)
. Since we have 1 6 k′ 6 k, the

branching factor would be
∑k

i=1(N − 1)i
(
T
i

)
. In order to avoid a large branching factor, in most

problems we will limit k 6 3.

Initial and Terminal States. Initial state is the starting point of the search. Complete output
space requires the initial state having a fully labeled output as well. Due to the challenge of
multiple local optima, the performance of search might be affected by the initial state. Therefore,
in practice, one would need to carefully pick the initial state. In practice, to avoid overfitting to
a particular initial state, some randomness should be added in the initial state generation. The
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simplest solution is using a purely random initial output.
Complete output space search usually does not have a hard criteria about what state should be

the terminal state. Instead, a stopping criteria would be defined to decide when to stop search.
For example, we can limit the search to a maximum search depth.

5.2.3 H and C Networks

The heuristic networkH and cost network C are instantiations of scoring functions F (x, y), which
take a pair of structured input and output, and return a real value. x is feature vector of the input
example, and y is the structured output vector. The valueH(x, y) indicates how good the current
state is to expand, or how far the current state is to the goal state (x, y∗). The value C(x, y)

seeks to approximate 1 − l(x, y, y∗) without knowing y∗, where l is the output loss function,
e.g., hamming error. The design ofH and C networks is usually task-specific. For example, in
multi-label classification problem, they could be 2-layer fully connected networks (FCNs). In
image segmentation problem, the network might include three layer of CNNs and two layers of
FCNs, etc. Note that our HC-Nets framework does not have any requirements on the network
architecture for bothH and C. There are, however, complex domain-specific trade-offs between
the complexity of the networks and the efficiency of the resulting search with that architecture.

5.3 Heuristic and Cost Function Learning

5.3.1 Stage-wise Learning vs. Joint Learning

Since there are two functions in our approach, the learning needs to take their dependency into
consideration. There are two possible general learning strategies based on the relations of the two
functions.

Stage-wise Learning. Stage-wise learning strategy follows the original learning approach of
HC-Search. In the original HC-Search learning, the error of the structured prediction learning
is decomposed into two parts: 1) generation error, which occurred when heuristic function fails
to guide the search uncovering a search tree with ground truth outputs; and 2) selection error,
which is caused by the cost function when it fails to choose the “best output” (according to output
loss function l) in the generated candidates. Thus, the training contains two separate stages:
heuristic function training first, followed by the cost function training conditioned on the learned
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heuristic function. Stage-wise learning is easy to implement in practice, but is imperfect in some
respects. For example, cost function training depends on an existing heuristic function, but can
never influence the heuristic training. In other words, this learning strategy does not follow the
end-to-end learning principle.

Joint Learning. Another strategy is to learn the two functions jointly. Under this formulation,
the error of the heuristic is a function of the cost, and similarly the error of the cost is a function
of the heuristic. The training algorithm will iteratively update the heuristic and the cost function
one after another. When we update one function, the other one would be treated as constant.

The current thesis only evaluates the stage-wise learning approach. The formulation and
experimental evaluation of joint learning will be an important part of future work.

5.3.1.1 Heuristic Function Learning

The key idea of the heuristic function training is inspired by imitation learning. The target is to
guide the search to execute the correct action at each search step. To define the term “correct
action,” we need to have an output loss function l(x, ŷ, y∗), given input x and the ground truth
output y∗. In our search algorithm, the “correct action” is defined as the best action whose output
has the minimum l among all its siblings. In another words, if yt+1 is the output of yt by executing
action at at step t, then at is the best action if l(x, ˆyt+1, y

∗) is the minimum among all other
candidate successors.

In heuristic function training stage, we run greedy search to expand a search tree for each
example. This search procedure also needs a scoring function to guide. There are two possible
choices: using l directly, or using the current learned heuristic functionH, named on-trajectory
and off-trajectory, respectively. Since we employ the “update after each mini-batch” strategy, at
each search step we only aggregate training data for the current step instead of directly doing the
weight update. The update would be postponed until the all examples of each mini-batch have
been processed. Similar to most machine learning libraries, we reduce the update procedure as a
blackbox optimization problem, and provide two possible reductions for the blackbox optimizer:
regression-based and ranking-based reductions.

Blackbox Optimizer. A blackbox optimizer usually takes feature vectors from a set of input-
output pairs, and a loss function defined over these pairs as the objective. These outputs are
a subset of uncovered outputs in the search tree. It also takes some learning parameters, and
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optimises the model with respect to the objective.

Training Data Aggregation. The training data aggregation step collects a set of example
outputs as the input to the optimizer. Ideally, the optimizer should take the outputs in the entire
search tree of each example as input, but for some tasks this would cause scalability issue due to
the large size of the search trees. Another alternative choice is only including the last output on
the search path, because the last output is the best output on the trajectory. In this work, we apply
TrajOutput, which includes outputs that were expanded during search (trajectory outputs),
because these outputs are the “best outputs” among all their siblings, and it is a reasonable
trade-off between the diversity and scalability of outputs in the set.

5.3.1.2 Cost Function Learning

The cost function learning is relatively simple. In cost function learning, the generation stage
can be viewed as a blackbox. This blackbox outputs a finite set of candidate outputs, which
correspond to the search tree guided by heuristic function. At this point, the argminy C(x, y)

computation is not intractable anymore since y is chosen from the finite candidate set rather than
from the entire solution space. If we treat each output in this set as a “candidate label” and the
best output in terms of l as the “correct label”, then cost function learning can be easily reduced
to a rank learning problem.

Algorithm 9 is the general function learning algorithm ofHC-Nets. The heuristic and cost
function learning are incorporated in a single algorithm. We will discuss the optimization in the
following sections.

5.3.2 Reduction to Regression Learning

The goal of training is to learn a function f such that the searcher will behave exactly the same as
it was guided by the loss function l. Thus,if f and l can return the same value for any given input
and predicted output, the goal would be achieved. That is the motivation for regression-based
learning. Formally, we define the regression loss over all input-output pairs in the aggregate data
for a given function as∑
(x,y,y∗)∈R

L(x, y, y∗, l, f) =
∑

(x,y,y∗)∈R

l(x, y, y∗) log f(x, y)− (1− l(x, y, y∗)) log(1− f(x, y))

(5.1)
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Algorithm 9 Heuristic and Cost Function Training
Input: D = {x,y∗}N , structured input-output training examples
optimizer, blackbox optimizer to do weight update
b = 1, set beam size as 1 to apply greedy search; m, mini-batch size
Output: θH , θC , network weights of heuristic and cost function

1: R← ∅
2: for epoch← 0 to MAX_EPOC do
3: for (x,y∗)← D do
4: y0 ← INITIALOUTPUT(x)
5: B ← {y0}
6: repeat
7: ybest ← POPBEST(B; l) // change l to θ to do off-trajectory learning
8: B ← B ∪ SUCCESSOR(ybest) // expand the current state
9: R← R ∪ {ybest} // add trajectory output into aggregation set

10: if ybest is local optimal then
11: break
12: end if
13: B ← keep top-b states of B
14: until maximum search steps
15: if end of mini-batch size m then
16: θH ← optimizer(R, θH , l) // update heuristic weights
17: θC ← optimizer(R, θC , l) // update cost weights
18: R← ∅ // clear cached training data
19: end if
20: end for
21: end for
22: return θH , θC

which is the cross-entropy loss over f and l. We can use stochastic gradient descent to do the
optimization as in Algorithm 10.

5.3.3 Reduction to Rank Learning

Although regression-based optimizer is easy to understand and straightforward to implement, it
also has some drawbacks. First, it learns more than what we really need. Note that in our search,
to pick the best successor, we only need to ensure that the best state would rank higher than
others, but do not care about the exact value of the heuristic or cost. Second, regression based



64

Algorithm 10 Regression-based Optimizer
Input: R = {x,y∗}M , aggregated input-output training examples
l(y, y∗), output true loss function
θ, the weights before update

1: repeat
2: for (x,y,y∗)← R do
3: l∗ ← l(y,y∗)
4: L← l∗ log f(x,y; θ)− (1− l∗) log(1− f(x,y; θ))
5: θ ← θ − d

dθL
6: end for
7: until maximum iteration or convergence
8: return θ

learner does not take the internal relations of each expanded sibling states (state ranking list) into
consideration, but treats each state as an independent regression point. The information in the
search procedure is not fully exploited.

A ranking-based reduction can overcome these potential issues. Our rank learner will try to
minimize the ranking loss. The ranking loss is defined by counting the number of violated pairs
in a ranking list. More specifically, given an input x, for any pair of predicted outputs y1 and
y2 in the same ranking list, pair 〈y1, y2〉 is a violated pair if (f(x, y1)− f(x, y2))(l(x, y1, y

∗)−
l(x, y2, y

∗)) < 0. Instead of considering all possible pairs, we only include pairs that involve the
true best output ỹ at current step, which is the output with the minimum l value in the ranking list.
Formally, we first define ỹ = arg miny∈B l(x, y, y

∗), and then define the ranking loss over each
element in the ranking list B as:∑
y∈B\ỹ

Lrk(x, y, ỹ, y
∗, l, f) =

∑
y∈B\ỹ

max
{

0,−
(
f(x, ỹ)− f(x, y)

)(
l(x, ỹ, y∗)− l(x, y, y∗)

)}
(5.2)

5.4 Experiments and Results

5.4.1 Experimental Setup

We evaluate our frameworks on three tasks. We first choose multi-label classification since it is
clearly defined and is a relatively simple problem with standard benchmark datasets and plenty
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Algorithm 11 Ranking-based Optimizer
Input: R = BM , where B = {x,y∗}L, aggregated input-output training examples
l(y, y∗), output true loss function
θ(x, y), the model before update

1: repeat
2: for B ← R do
3: ỹ = arg miny∈B l(x, y, y

∗)
4: L =

∑
y∈B\ỹ max

{
0,−

(
f(x, ỹ)− f(x, y)

)(
l(x, ỹ, y∗)− l(x, y, y∗)

)}
5: θ ← θ − d

dθL
6: end for
7: until maximum iteration or convergence
8: return θ

of baseline performances. Then, we apply our approach on real world problems in a variety of
domains, including hand-written word recognition and semantic image segmentation.

Multi-label Classification. Multi-label classification task is to predict a binary vector for an
input example, where each bit indicates whether a corresponding label should be given to the
input. Each input example is represented with a feature vector, and can be assigned to one or
more possible labels.

We evaluate our approach on three datasets: Yeast, Bibtex and Bookmarks. Following the
setting of the prior work, we pick the Bibtex and Bookmarks datasets in order to compare against
SPEN(Belanger et al., 2017), DVN(Gygli et al., 2017) and InfNet(Tu and Gimpel, 2018). To
verify the performance on the relatively small datasets in terms of training set and label size, we
add an additional dataset Yeast. Yeast has 14 candidate labels, while Bibtex and Bookmarks
contain 158 and 208 labels respectively. We apply the standard train/test split of 1500/917 for
Yeast, 4800/2515 for Bibtex and 60000/27856 for Bookmarks. The macro-averaged F1 accuracy
is used as the evaluation metric.

Our heuristic and cost function network for multi-label classification is derived from (Belanger
and McCallum, 2016; Gygli et al., 2017). The following figure 5.2 shows the structure of the
neural network. In our experiments, we set the maximum number of epochs to 300. For each
dataset we randomly split out 5% of the examples as validation set. We use the learning rate of
0.005 for Yeast, and 0.1 for the other two datasets.
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Figure 5.2: The heuristic and cost function network in multi-label classification.

Word Recognition Word recognition is the task of recognizing five-letter English words from
given images. It is tested on a synthetic dataset constructed by repeatedly choosing from a list
of 50 common English words, and corresponding letter images from the Chars74K dataset.The
image of each word is cropped into five letters, and each of them is rendered as a 28x28 pixel
image. Following the setting of (Graber et al., 2018), the training, validation, and test sets for these
experiments consist of 1000, 200 and 200 examples, respectively. We evaluate the performance
with character-wise accuracy and word-wise accuracy.

Our network for this task contains two parts. The first part measures the consistency between
the letter image to a letter label, which starts from the output of AlexNet(Krizhevsky et al., 2012),
and is followed by two fully connected layers. The second part, consists of a two-layer feed
forward networks, and captures the relevance between labels values (similar to the pairwise,
ternary, quadery potentials in CRFs). A linear weighted sum of two parts, followed by a sigmoid
activation are the last two layers before the output.

Image Segmentation Semantic image segmentation task is to segment the give image into
different regions, and label each region according to their meaning. For example, if the image
contains a horse on the grassland, then the system should label the pixels that cover the horse
as HORSE, and the other region as GRASS. To simplify the task, we will only focus on the
foreground-background segmentation which contains only two classes. We choose the Weizmann
Horses database, consisting of 328 images of horses, including the corresponding ground truth
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masks. Following the setup of DVN, we use the train/validation/test splits of 196/66/66 images,
respectively. All the images and masks are re-scaled to 32x32 pixels. The results will be evaluated
with intersection over union (IoU) to ensure that it is comparable to the baselines.

We will follow the same design of network architecture as DVN, shown in Figure 5.3. The
network itself contains three convolution layers followed by two fully connected layers.
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Figure 5.3: The network architecture for image segmentation.

5.4.2 Results and Discussion

We compare our performance with state of the art approaches, including SPEN(Belanger et
al., 2017), DVN(Gygli et al., 2017), InfNet(Tu and Gimpel, 2018), NLStruct(Graber et al.,
2018). In order to compare the effects of initialization methods, we also present the results
with pure random initialization and with learned classifier output as initialization. In Table 5.1,

*-Rand-Init denotes the result with random initialization and *-Learned-Init is the
result with an initialization predicted by an i.i.d. classifier for each output label. Regr and Rank
represent the regression and ranking reduction respectively.

Comparison to State of the Art From the results in Table 5.1, we can see that our approach
gets a comparable or better accuracy on most the datasets. The only exception is the ranking
reduction performance on Horses dataset. This is because our currently offline rank learner only
accept the simple feed-forward network architecture. We believe the performance can be further
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Multi-Label Word Recog. Image Segm.
Algs. Yeast Bibtex Bookmarks HW-Words Horse32x32

Averaged F-1 Acc. Char Acc. IoU
SPEN 63.8 38.1 33.9 42.26 75.45
DVN 63.8 44.7 37.1 - 84.00
InfNet - 42.2 37.6 37.95 69.31

NLStruct - - - 44.37 81.86
Regr-Rand-Init 62.5 43.2 34.9 39.02 74.62

Regr-Learned-Init 62.6 44.7 37.8 45.14 82.55
Rank-Rand-Init 62.6 43.8 36.4 45.52 68.8

Rank-Learned-Init 64.0 45.9 38.7 45.98 73.2

Table 5.1: Accuracy comparison with the SOTA approaches.

improved with a more flexible rank l earning algorithm. Our approaches can achieve a larger
performance margin against the baselines on Bibtex and Bookmarks. This is partly because these
two datasets are relatively large, and can provide more training materials during search, while the
other three datasets contain less than 1000 examples. Our program did not outperform DVNs
on Horses dataset due to several reasons. The main reason is the much bigger structure size of
Horse images compared to the other two tasks, which poses at least two challenges. First, the
search with a large output size is more sensitive to the initial output. Second, the large size of the
output usually requires more steps to reach the target state in generation step, which would lead
to a longer trajectory and more generated outputs. To control the complexity of heuristic search
stage, we did not directly apply search to the initial output, but sampled a proportion of variables
and assigned them with initial output values while keeping the others at ground truth values. This
mismatch between training and testing might have also hurt the performance. Considering the
initialization methods, the Learned-Init performs better than Rand-Init in most cases.
This is not surprising because the Learned-Init provides a better starting point of search that
improves the quality of generated outputs in limited number of search steps. The comparison
between the rows of Regr-* and Rank-* shows that ranking reduction is more effective
learning reduction compared to regression, which reflects the drawbacks of regression-based
reduction we mentioned at the beginning of Section 5.3.3.

Ablation Study of Generation and Selection Errors Table 5.2 shows another analysis on
varying the maximum search depth of generation stage. We present both generation and selection
accuracy with two different initialization methods. The generation accuracy is the result of
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running HL-Search, which means that we apply our learnedH function in the generation stage,
but use the output loss function l as the cost function in the selection stage, therefore we can
decompose the error ofH and the error of C.

Depth Gen. Acc. Real Acc.
Rand-Init Learned-Init Rand-Init Learned-Init

Yeast
2 0.531 0.674 0.462 0.579
5 0.755 0.816 0.553 0.623
10 0.816 0.831 0.564 0.627
14 too slow too slow 0.598 0.629

Bibtex
2 0.698 0.722 0.312 0.375
3 0.722 0.748 0.384 0.421
4 0.759 0.801 0.385 0.425
5 0.762 0.811 0.385 0.426

Bookmarks
2 0.791 0.84 0.285 0.344
3 0.791 0.856 0.279 0.357
4 0.792 0.882 0.292 0.358

Words Recognition
1 0.22 0.41 0.15 0.28
5 0.56 0.67 0.32 0.35
10 0.74 0.88 0.38 0.41
15 0.83 0.91 0.37 0.404

Horse32x32
10 0.24 0.68 0.164 0.531
20 0.57 0.73 0.415 0.628
50 0.79 0.86 0.614 0.719
65 0.88 0.93 0.628 0.698

Table 5.2: Accuracy with different generation search depths.

Although the generation accuracy keeps increasing as the depth goes deeper as expected, the
selection accuracy saturates at some depth. This is because it becomes increasingly challenging
to pick the right output from a large number of generated outputs. Second, the Learned-Init
performs better then Rand-Init on both generation and selection accuracy with a big margin
when the depth limit is small, but the gaps vanish at larger depths.
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5.5 Summary

In this work, we proposed theHC-Nets framework to solve the structured prediction problem with
a two-stage search approach. In generation stage, we run greedy search under the k-flipbit search
space to uncover a set of candidate outputs, guided by the heuristic function. In selection stage, the
cost function is employed to find the best prediction among the generated output set. The heuristic
and cost function are neural network models. We provide two reductions of learning algorithms:
the regression-based reduction and the ranking-based reduction. Our results shows thatHC-Nets
outperform the baselines over most presented domains, which proves the effectiveness of our
approach. We believe the performance ranking reduction learning can be further improved with a
more flexible rank learning algorithm.
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Chapter 6: Conclusions and Future Work

In this thesis, we extended the search-based approaches for structured prediction in several new
directions. This section summarizes the main contributions and outlines future research directions.

6.1 Contributions of the Thesis

We developed a learning approach called Prune-and-Score to improve the accuracy of greedy
structured prediction for search spaces with large action spaces. The key idea is to learn two
functions: a pruning function that prunes bad decisions and a scoring function that then selects the
best remaining decision. We reduce the problem of learning these two functions to rank learning,
which allows us to leverage powerful and efficient off-the-shelf rank learners. We apply this
method to the problem of co-reference resolution in natural language processing. The evaluation
results on OntoNotes dataset proves that it is competitive with the state-of-the-art approaches at
the time of its development and compares favorably with a greedy search-based approach that
uses a single scoring function.

To address the SP problems that involve multiple tasks, we explored search-based methods
to solve multi-task structured prediction (MTSP), in the context of a specific NLP application:
entity analysis. We employed complete output space best first beam search as the inference
method, and learned linear scoring functions with structural SVM. Due to the large output
size with multiple tasks, the inference efficiency becomes critical and challenging. We studied
three search architectures, the widely used “pipe line” and “joint” architectures, and a novel
“cyclic” architecture, which exhibits the best trade-off between speed and accuracy of training
and inference. The cyclic architecture has the advantage of not increasing the branching factor of
the search beyond that of a single task, while offering some error tolerance and robustness with
respect to task order. We performed empirical evaluation of the proposed architectures for entity
analysis, and achieved the state-of-the-art results on two datasets.

We also extended the originalHC-Search (Doppa et al., 2013b, 2014a) framework to deep
neural networks and created a new framework called HC-Nets. The motivation for this work
is to automate the human engineering of features in structured prediction and overcome the
implementation issues in the existing deep structured prediction methods including the hardness
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of incorporating constraints, the instability of training and the difficulty of debugging. To deal with
these issues, we formulated structured prediction as a complete and discrete output space search
problem, and decomposed the inference procedure into two stages: generation and selection. We
employed two neural network functions to guide the search – a heuristic functionH for generating
candidate outputs and a cost function C for selecting the best output from the generated candidates.
The discrete output space makes the incorporation of prior knowledge constraints straightforward,
and the separation ofH and C functions makes the representation more expressive and learning
more modular. The evaluation on three benchmark tasks shows that our approach can achieve
competitive performance.

6.2 Future Work

We now list some important open problems and future directions for this line of research.

• End-to-End MTSP with Deep Neural Networks. In Chapter 4, we presented a solution for
solving the multi-task structured prediction with beam search guided by linear cost functions.
In recent work on deep neural networks, end-to-end learning with large scale training data
has become a promising direction to improve the accuracy of the state of the art NLP systems
on a variety of tasks. The recent progress on BERT (Devlin et al., 2018) model has partially
proved this point. It would be an interesting topic to explore how to integrate this idea with
search-based MTSP approaches. More specifically, this research would try to answer the
questions like the following: how to formulate search-based SP approach in an end-to-end
learning framework; what tasks can be solved jointly; and how to make trade-offs between the
efficiency and model complexity in both training and testing of deep neural networks.

• HC-Nets Learning for Variable Length Sequences. InHC-Nets framework, to ensure that
scored values of different input-output pairs are comparable, the network output values should
lie in the same range. However, in many structured prediction applications, the input and output
examples are both sequences of variable length. Because the inputs of neural networks are of
fixed dimension, creating a fixed length representation for these non-fixed length inputs is a
challenge. Currently, there are two possible candidate directions for this problem. The first is
to use the last hidden state vector of recurrent models like LSTMs or GRUs. The second is to
apply one dimensional CNNs with the fixed span filters with shared parameters over the input.
While SP-methods based on partial output space explored both these directions, they have not
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been explored for complete output space search to the best of our knowledge.

• Joint Learning of H and C networks in HC-Nets. In our current proposed HC-Nets
framework, we formulate the learning of H and C functions as stage-wise learning problem.
TheH learning is done first, and then conditioned on learnedH, we train C-learning. Although
such a formulation ofH and C learning works well, it is not fully satisfactory because it does
not follow the end-to-end learning philosophy of deep learning. In particular, during the cost
function learning, the update of C would never be able to backpropagate toH. The success of
inference network (Tu and Gimpel, 2018) provides an inspiration for solving this problem and
seems extendable to HC-Nets. The big picture of this idea is to formulate the learning in an
analogy to generative adversarial network (GAN), whereH performs the role of the generator
network, and C the discriminator network.
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