
New Directions in Search-Based 
Structured Prediction: Multi-Task Learning 

and Integration of Deep Models

Chao Ma
July 15th, 2019

PhD Final Exam Presentation

Committee:

Prasad Tadepalli, Janardhan Rao Doppa, 
Xiaoli Fern, Weng-Keen Wong

GCR:  Leonard Coop



Introduction
Structured Prediction:

Model + InferenceInput Output
f : X      Yx y
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Introduction
Structured Prediction:

Model + InferenceInput Output
f : X      Yx y

Syntactic Parsing

John hit the ball
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Introduction
Structured Prediction:

Model + InferenceInput Output
f : X      Yx y

Image Scene Labeling

Syntactic Parsing

John hit the ball
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Introduction
Structured Prediction:

Input Output
f : X      Y y

f (x, y)

x y

Model Inference

Feature 
Vector

y = argmax f (x, y)
y

^

Intractable in most casesf (x, y) = w · ϕ(x, y)
e.g.

Representation 
Vector

f (x, y) = DNN (x, y)

Linear:

NN:
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Introduction

Input Output
f : X      Y yx y

ModelInference

y = argmax  f (x, y)
y

^

Search-Based Structured Prediction:

• Search Space Formulation
• Search Algorithm
• Scoring function to guide the search

Search Tree

State-Space Search
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Structured Prediction Frameworks

CRFs, SSVM, 
SPerceptron DSM, SPEN, DVN

LaSO, PruneScore, 
HC-Search, MTSP

Seq2Seq-BSO
HC-Nets

Non-Deep Models Deep Models

Search-
Based

Non-
Search-
Based

This Thesis

We can classify most of the structured prediction approaches into 
this four cell table.
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State Space: Partial vs. Complete Output 
Space

Input:

y = ????????????
Outputs:

y = c???????????

y = co??????????

y = con?????????

…

Outputs:

y = cangrotulerians

y = congrotulerians

y = congrotulerions

y = congratulerions…

Partial vs. Complete Output Space



Contributions

1. Developed Prune-and-Score to improve the accuracy of 
greedy policy based structured prediction with large action 
spaces.

1. Studied three learning architectures for multi-task structured 
prediction (MTSP) problems with different trade-offs between 
speed and accuracy.

1. Proposed a HC-Nets framework that synergistically 
combines the advantages of output space search based 
structured prediction methods and deep models.
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Prune-and-Score: Learning Greedy Policy 
for Structured Prediction

For some problem, even with greedy search, the branching factor is 
still too large to make the correct decision.

o Can we prune the action space at each step to reduce 
the branching factor and improve the accuracy? 

o Can we formulate the imitation learning problem to an 
offline rank learning problem?

This work tries to answer following questions:
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Coreference Resolution: The Problem

Coreference 
Resolver

Input:

Output:

Extracted Mentions

Coreference Clustering

“[Barack Obama] nominated [Hillary Clinton] as his
[secretary of state] on Monday. [He] chose [her]
because [she] had foreign affair experience as a 
former [First Lady].”

Barack Obama
He

Hillary Clinton
First Lady

Her
SheSecretary of state
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Coreference Resolution: Problem Setup

Learning
Algorithm

Coreference 
Resolver

Set of training examples
(input-output pairs)

Tr
ai

ni
ng

Te
st

in
g

Coreference 
Resolver

Input Output

Learned  Predictor

……
……

“[Barack Obama] nominated [Hillary Clinton] 
as his [secretary of state] on Monday. [He]
chose [her] because [she] had foreign affair 
experience as a former [First Lady].”

“[Barack Obama] nominated [Hillary Clinton] 

Barack Obama
He

Hillary Clinton
First Lady

Her
SheSecretary of state

?
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[Ramallah ([West Bank])]10-15 ([AFP] ) –
[Eyewitnesses] reported that [Palestinians]
demonstrated today Sunday in the [West Bank]
against the [Sharm el-Sheikh] summit to be held in 
[Egypt] tomorrow Monday. In [Ramallah],  [around 
500 people] took to [the town]’s streets chanting 
slogans denouncing the summit ...

Coreference Resolution: Greedy Search
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[Ramallah ([West Bank])]10-15 ([AFP] ) –
[Eyewitnesses] reported that [Palestinians]
demonstrated today Sunday in the [West Bank]
against the [Sharm el-Sheikh] summit to be held in 
[Egypt] tomorrow Monday. In [Ramallah],  [around 
500 people] took to [the town]’s streets chanting 
slogans denouncing the summit ...

Coreference Resolution: Greedy Search

Current mention: 

(Partial) Co-reference result: 

[Ramallah (West Bank)]
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[Ramallah ([West Bank])]10-15 ([AFP] ) –
[Eyewitnesses] reported that [Palestinians]
demonstrated today Sunday in the [West Bank]
against the [Sharm el-Sheikh] summit to be held in 
[Egypt] tomorrow Monday. In [Ramallah],  [around 
500 people] took to [the town]’s streets chanting 
slogans denouncing the summit ...

Coreference Resolution: Greedy Search

Current mention: 

(Partial) Co-reference result: 

[Ramallah (West Bank)]

Ramallah (West Bank)
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[Ramallah ([West Bank])]10-15 ([AFP] ) –
[Eyewitnesses] reported that [Palestinians]
demonstrated today Sunday in the [West Bank]
against the [Sharm el-Sheikh] summit to be held in 
[Egypt] tomorrow Monday. In [Ramallah],  [around 
500 people] took to [the town]’s streets chanting 
slogans denouncing the summit ...

Coreference Resolution: Greedy Search

Current mention: 

(Partial) Co-reference result: 

[Sharm el-Sheikh]

Ramallah (West Bank)

AFP
Eyewitnesses Palestinians

West Bank
West Bank
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[Ramallah ([West Bank])]10-15 ([AFP] ) –
[Eyewitnesses] reported that [Palestinians]
demonstrated today Sunday in the [West Bank]
against the [Sharm el-Sheikh] summit to be held in 
[Egypt] tomorrow Monday. In [Ramallah],  [around 
500 people] took to [the town]’s streets chanting 
slogans denouncing the summit ...

Coreference Resolution: Greedy Search

Current mention: 

(Partial) Co-reference result: 

[Sharm el-Sheikh]

Ramallah (West Bank)

AFP
Eyewitnesses Palestinians

West Bank
West Bank
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Sharm el-SheikhRamallah (West 

Bank)

West Bank
West Bank

7
PalestiniansAFP

Eyewitnesses

Successor Function
[Ramallah ([West Bank])]10-15 ( [AFP] ) – [Eyewitnesses] reported that 
[Palestinians] demonstrated today Sunday in the [West Bank] against the 
[Sharm el-Sheikh] summit to be held in [Egypt] tomorrow Monday. In 
[Ramallah],  [around 500 people] took to [the town]’s streets chanting 
slogans denouncing the summit ...
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Successor Function

Current mention 

Sharm el-Sheikh

Candidate entities 

Ramallah (West Bank) West Bank
West Bank

7
PalestiniansAFP

Eyewitnesses

At any state at depth t, we will have several candidate actions as 
following:  

State: partial coreference output 

MERGE(m, C): merge mention into the early entity C. 
NOOP(m):        start a new entity which only contains m.

MERGE(m, C)
NOOP(m)
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Sharm el-Sheikh
7

Prune-and-Score for Greedy Search: Illustrate

Pruning action by keeping 
top b (here b = 2).

Ramallah (West 

Bank)

West Bank
West Bank

PalestiniansAFP
Eyewitnesses

All candidate actions: 

Pruner F(prune) with parameter b

Scorer F(score) Picking the best action.
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Prune-and-Score for Greedy Search: Illustrate

21



Prune-and-Score for Greedy Search: Illustrate

Pruning
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Prune-and-Score for Greedy Search: Illustrate

Pruning
0.2 0.4 0.50.6 0.1
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Prune-and-Score for Greedy Search: Illustrate

Pruning (b=2)
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Prune-and-Score for Greedy Search: Illustrate
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Prune-and-Score for Greedy Search: Illustrate

Scoring
0.590.74
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Prune-and-Score for Greedy Search: Illustrate

Scoring
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Prune-and-Score for Greedy Search: Illustrate
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Prune-and-Score: Learning Approach
We optimize the overall loss of the Prune-and-Score 
approach in a stage-wise manner.

Stage 1: Learn pruning function to optimize the pruning error.

Stage 2: Learn scoring function conditioned on the learned 
pruning function.

co
nd

iti
on

ed
  o

n
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Experimental Setup
Datasets

MUC 6:  Message Understanding Conference (MUC6, 1995)
Train/Dev/Test: 268/68/107  documents

ACE 2004:  Automatic Content Extraction (NIST, 2004)
Train/Dev/Test: 195/30/30  documents

Base Ranker Learner
LambdaMART (Burges, 2010), implemented in RankLib

Evaluation Metrics
MUC F1, BCubed F1, CEAF F1.

Baseline Approaches
Only Scoring Function
UIUC:                 (Chang et al., 2013)
JHU:  Easyfirst  (Stoyanov and Eisner, 2012)
Stanford: Multi-Sieves  (Raghunathan et al., 2010)
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ACE 2004 MUC 6

F-1 score MUC B-Cubed CEAF MUC B-Cubed CEAF

Prune-Score 78.6 83.04 79.42 85.27 80.49 67.83

Only Scoring 75.4 80.75 78.58 83.76 77.11 64.91

JHU 80.1 81.8 - 88.2 77.5 -

UIUC 78.29 82.2 79.26 - - -

Prune-and-Score vs. State-of-the-Art

From the score value, it is easy to see that we significantly improve over 
single scoring function approach. Also, our scores are comparable or better 
than state-of-the-art.
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Summary of Prune-and-Score
h Coreference Resolution as a greedy search 

process

h Key Idea: Scoring Function => Pruning Function + 
Scoring Function

h Apply the offline rank learner for imitation learning

h Achieved results that are comparable than the 
state-of-the-art
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Multi-Task Structured Prediction (MTSP) 
for Entity Analysis

What if you want to solve multiple corelated structured prediction 
tasks with complete output space search?

We want to use complete output space so that we can 
extract high-order features to exploit the interdependencies 
between tasks

o Can we do complete output space search for multiple tasks 
accurately and efficiently?

We can concatenate the output of multiple tasks to form a 
super-output. But search on such super-output would be 
slow due to the huge branching factor.
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Input
Text

POS 
Taggin

g

Coreference 
Resolution

Question 
AnsweringTokenize

r

Entity 
Linking

Event 
Arguments 
Extraction

Dependency 
Parsing

Named 
Entity 

Recognition

Syntactic 
Parsing

Relation 
Extraction

Semantic 
Role 

Labeling

Question
?

Answer

A composite NLP system for 
Text Comprehension and Question Answering

Example of NLP Pipelines
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The NLP tasks that are related to “entity mentions”

Entity Analysis Tasks 

• Named Entity Recognition

• Coreference Resolution

• Entity Linking

35



Problem Setup
He left [Columbia] in 1983 with a BA degree, ... 
after graduating from [Columbia University], he 
worked as a community organizer in Chicago…

i = 2i = 1
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Problem Setup
He left [Columbia] in 1983 with a BA degree, ... 
after graduating from [Columbia University], he 
worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1         ,       1  ， 2      ， 4  ， 5  ， 6  ， 7  ) 

Columbia University
co-referent link

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

m1，m2,  m3 m4, m5
m6 m7

coreference clustering
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Problem Setup
He left [Columbia] in 1983 with a BA degree, ... 
after graduating from [Columbia University], he 
worked as a community organizer in Chicago…

Coreference:

Named Entity 
Recognition :

Entity Linking:

Columbiaycoref =                 (                   ,                                       ,    … ) 

ylink =                     (                     ,                                             ,    … ) 

yner =                      (    ORG,               ORG,                                 … ) 

Columbia University
co-referent link

co-referent link

yi = {1, 2 … i}

yi = {ORG, PER, GPE, LOC,
FAC, VEL, WEA}

yi = {
https://en.wikipedia.org/wiki/Columbia_University,
https://en.wikipedia.org/wiki/Columbia_District,
https://en.wikipedia.org/wiki/Columbia,_British_Columbia,
https://en.wikipedia.org/wiki/Columbia_College,_Columbia_University,
…

}

https://en.w
ikipedia.org
/wiki/Colu
mbia_Univ
ersity

https://en.wikipedia.o
rg/wiki/Columbia_Un
iversity

i = 2i = 1
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Multi-Task Structured Prediction (MTSP):

models

Input

Output

f 1 : X    Y1

= w1 · ϕ1(x, y)
f 2 : X    Y2

= w2 · ϕ2(x, y’)
f 3 : X Y3

= w3 · ϕ3(x, y’’)

y2

x

y1 y3

Multi-Task Structure Prediction

o How to exploit the interdependencies between tasks?
40



Introduce Inter-task Features:

models

Input

Output

f 1 : X    Y1

= w1 · ϕ1(x, y)
f 2 : X    Y2

= w2 · ϕ2(x, y’)
f 3 : X Y3

= w3 · ϕ3(x, y’’)

y2

x

y1 y3

Multi-Task Structure Prediction

Intra-task Features

Inter-task Features

ϕ(1,2)(x , y , y’) ϕ (2,3)(x , y’ , y” 
)

ϕ (1,3)(x , y , y”)

41



Inter-task 
Features He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 
worked as a community organizer in Chicago…

Coref-NER:

Columbia

y = y = y = 

Columbia University

Coref-Link:

NER-Link:

co-referent link

e.g.: Agreement of NER tags of two coreferent mentions

ORG ==                       ORG√

e.g.: Relation of KB entries of two coreferent mentions
University is-same-category University
Mathematics is-sub-category Mathematics education

e.g.: NER-tag and Category
pair indicator

(ORG, University)
(ORG, Institute)
(PER, President) …

Bonus to the co-related pair
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Pipeline Architecture
Learning k (= 3) independent models, one after another;

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2 w(2,3)w(1,3)

Define a order:  Task 1 → Task 2 → Task 3

43



Pipeline Architecture

Task 1:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature 
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
pr

ed
ic

t w1 predict

Learning k (= 3) independent models, one after another;
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Pipeline Architecture

Task 1:

Task 2:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature 
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
pr

ed
ic

t w1 predict

Use feature
ϕ2 (x,y),  ϕ(1,2) (x,y,y’)

y2y1 y3

SSVM Learner

predictw(1,2)w2

tr
ai

n
pr

ed
ic

t

Learning k (= 3) independent models, one after another;
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Pipeline Architecture

Task 1:

Task 2:

Task 3:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature 
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
pr

ed
ic

t w1 predict

Use feature
ϕ2 (x,y),  ϕ(1,2) (x,y,y’)

y2y1 y3

SSVM Learner

predictw(1,2)w2

tr
ai

n
pr

ed
ic

t

Use feature 
ϕ3(x, y) ,  ϕ(1,3)(x,y,y”)
ϕ(2,3) (x,y’,y”)

y2y1 y3

SSVM Learner

predict

tr
ai

n
pr

ed
ic

t

w3 w(2,3)w(1,3)

Learning k (= 3) independent models, one after another;
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Joint Architecture
Task 1 & 2 & 3:

Use all features 
ϕ1 (x,y), ϕ2 (x,y), ϕ3(x,y) ,
ϕ(1,2) (x,y,y’), ϕ(1,3)(x,y,y”) ,
ϕ(2,3) (x,y’,y”)

x

SSVM Learner

tr
ai

n
pr

ed
ic

t predict

w(1,2)w1 w3w2 w(2,3)w(1,3)

y2y1 y3

ϕ  =  ϕ1 (x,y)ㅇϕ2 (x,y)ㅇϕ3(x,y)ㅇϕ(1,2)(x,y,y’)ㅇϕ(1,3)(x,y,y”)ㅇϕ(2,3) (x,y’,y”)

Vector 
concatenation 47



Cyclic Architecture

Task 1 → Task 2 → Task 3

Connect the tail of pipeline to the head?

Pipeline architecture

48



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3
Unshared-Weight-Cyclic Training
Step 1:

Step 2: y2y1 y3Predict  initial outputs:

49



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),
ϕ(1,2) (x,y,y’),
ϕ(1,3) (x,y,y”)

x

SSVM
 Learner

w
(1,2)

w
1

w
(1,3)

y1

Unshared-Weight-Cyclic Training
Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

Task 1 

Turn

50



Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),
ϕ(1,2) (x,y,y’),
ϕ(1,3) (x,y,y”)

x

SSVM
 Learner

pre
dict

w2
w

(1,2)

w
1

w
(1,3)

y1

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

Task 1 

Turn

w(1,2)

x y3y1

Use features 
ϕ2 (x,y),
ϕ(1,2) (x,y,y’),
ϕ(2,3) (x,y’,y”)

Task 2 

Turn

SSVM Learner

w(2,3)

y2

Unshared-Weight-Cyclic Training
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),
ϕ(1,2) (x,y,y’),
ϕ(1,3) (x,y,y”)

x

SSVM
 Learner

pre
dictw

(1,2)

w
1

w
(1,3)

y1

y3

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

Task 1 

Turn

w 3

w (2,
3)

w (1,
3)

x y3y1

Use features 
ϕ2 (x,y),
ϕ(1,2) (x,y,y’),
ϕ(2,3) (x,y’,y”)

Task 2 
Turn

SSVM Learner

w2 w(1,2) w(2,3)

y2

Ta
sk

 3 

Tu
rn

x

y2

y1

SS
VM

 Le
ar

ne
rUse features 

ϕ3(x,y),
ϕ(1,3)(x,y,y”),
ϕ(2,3) (x,y’,y”)

Unshared-Weight-Cyclic Training

Weights are 
independent
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Experimental Setup
Datasets: ACE2005 TAC-KBP2015

Train/Dev/Test Train/Dev/Test

Wikipedia Freebase
(2015 dump)

338/144/117

(2014 dump)

Evaluation:

132/36/167

ACE-to-Wiki 
annotation

Coref.       NER     Linking Within.Coref   Cross.Coref   NER & Linking

Knowledge 
Base:

CoNLL CoNLL NERLC
MUC
BCube
CEAFe

CEAFm

Combined accuracy of 
NER and Linking

Hamming

Hamming

All metrics are accuracies (larger is better)

average
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Results

Algms. Coreference NER Link Train 
time

MUC BCube CEAFe CoNLL Accu. Accu.
Berkeley 81.41 74.7 72.93 76.35 85.6 76.78 31min

a. Results of Joint Architecture without Pruning
STSP 80.28 73.26 71.58 75.04 82.24 75.36 9min

Joint w. 
Rand Init 80.23 73.79 72.03 75.35 82.20 76.99 48min

Joint w. 
Good init 82.18 76.57 74.00 77.58 85.71 78.77 34min

b. Results of Joint Architecture with Pruning
Score-

agnostic 81.10 75.79 74.33 77.07 85.63 78.71 16min

Score-
sensitive 82.81 75.77 74.96 77.85 87.18 80.28 37min

c. Results of Cyclic Architecture
Unshrd-

Wt-Cyclic 81.83 76.05 73.99 77.29 84.18 80.67 11min

Algm.

NER Link NERLC Within. 
Coref

Cross. 
Coref Train.

Accu. Accu. Accu. CoNLL CEAFm time
Rank-1st 87 - 73.7 - 80 -
Berkeley 88.9 74.8 72.8 82.98 80.8 6m29s

a. Results of Joint Architecture without Pruning
STSP 87.3 76.2 70.9 81.21 78.8 2m41s
Joint w. 
Rand. Ini 87.1 71.17 68.33 81.31 78.4 7m19s

Joint w.  
Good. Ini 89.72 76.98 74.43 82.8 81.3 6m11s

b. Results of Joint Architecture with Pruning
Score-
agnostic 89.54 76.84 74.31 82.99 81.4 4m15s

Score-
sensitive 89.33 77.68 74.63 83.17 81.3 9m2s

c. Results of Cyclic Architecture
Ushrd-
Wt-Cyc 89.57 77.68 74.6 82.08 80.5 3m52s

ACE05 Test Set Performance TAC15 Test Set Performance

Cyclic Architecture Performance

• Competitive accuracy, and much faster training
54



Summary of MTSP for Entity Linking

1. Formulated the problem of multi-task structured prediction (MTSP) 
in the context of entity analysis of NLP.

1. Developed a search-based learning framework: structured SVM for 
training; beam search for inference.

1. Studied three architectures: pipeline, joint, and cyclic to trade-off 
between accuracy and speed.

1. Evaluated two pruning approaches for the joint architecture

55



HC-Nets: A Framework for Search-based Deep 
Structured Prediction

We develop a general search-based framework that can 
perform neural network function learning under the 
discrete complete output space.

56

Prior search-based structured prediction approaches use 
hand-coded features.

The decomposition of heuristic and cost functions makes the 
representation more expressive and learning more modular.



HC-Nets for Structured Prediction

x

57

Generation Stage

Selection Stage

Entire
Output 
Space

best-first 
beam search

Input

ranking

Guided by Search Tree

Guided by
Search Tree

Heuristic Function

Cost Function

y
Predict
output

^

Se
t o

f O
ut

pu
ts



Generation Stage: H-Search
xInput Initial State

Search State

Starting point of search
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xInput Initial State
Search State

aAction
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Generation Stage: H-Search



xInput Initial State
Search State

aAction

Successor Function
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Generation Stage: H-Search



xInput Initial State
Search State

aAction Successor Function

Beam
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Generation Stage: H-Search



xInput Initial State
Search State

aAction Successor Function

H (x, y) 0.81 0.82 0.75 0.93 0.79
Heuristic 
Function
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Generation Stage: H-Search



xInput Initial State
Search State

aAction Successor Function

0.81 0.82 0.75 0.93 0.79

Best State in Beam
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Generation Stage: H-Search

H (x, y)
Heuristic 
Function



xInput Initial State
Search State

aAction Successor Function

0.81 0.82
0.75

0.93 0.79

Beam
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Generation Stage: H-Search

H (x, y)
Heuristic 
Function



xInput Initial State
Search State

aAction Successor Function

0.81 0.82
0.75

0.93 0.79

Beam
0.69               0.71               0.61            0.83
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H (x, y)
Heuristic 
Function



xInput Initial State
Search State

aAction Successor Function

0.81 0.82
0.75

0.93 0.79

Beam
0.69               0.71               0.61            0.83

BeamBeam

Cut-off the beam
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Generation Stage: H-Search

H (x, y)
Heuristic 
Function



xInput Initial State
Search State

aAction Successor Function

0.81 0.82
0.75

0.93 0.79

Beam
0.69               0.71               0.61 0.83

BeamBeam
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Generation Stage: H-Search

H (x, y)
Heuristic 
Function



xInput Initial State
Search State

aAction Successor Function

0.81 0.82
0.75

0.93 0.79

Beam

0.69               0.71               0.61 0.83

0.62               0.55                 0.70
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Generation Stage: H-Search

H (x, y)
Heuristic 
Function



xInput Initial State
Search State

aAction Successor Function

0.81 0.82
0.75

0.93 0.79

Beam

0.69               0.71               0.61 0.83

0.62                        0.55 0.70

0.65                      0.65                  0.68

States in beam are all 
becoming WORSE.

Local Optima
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Generation Stage: H-Search

H (x, y)
Heuristic 
Function



xInput Initial State
Search State

aAction Successor Function

0.81 0.82
0.75

0.93 0.79

0.69               0.71               0.61 0.83

0.62                        0.55 0.70

0.65                      0.65                  0.68

Terminal Search
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Generation Stage: H-Search

H (x, y)

Heuristic Function



0.81 0.82
0.75

0.93 0.79

0.69               0.71               0.61 0.83

0.62                        0.55 0.70

0.65                      0.65                  0.68

xInput
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Generation Stage: H-Search
Uncovered Search Tree

Genera
ted

 Outputs



0.46 0.77 0.75 0.53 0.79

0.35               0.72               0.45            0.53

0.57             0.32                  0.40

0.52                      0.45                  0.48

xInput
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Uncovered Search Tree

Selection Stage

C(x, y)

Cost Function



0.46 0.77 0.75 0.53 0.79

0.35               0.72               0.45            0.53

0.57             0.32                  0.40

0.52                      0.45                  0.48 73

Uncovered Search Tree

Selection Stage

C(x, y)

Cost Function

xInput

Final 
Prediction:

HC-Search



Search State

0 1 00 0 1 1 0 0

(x, y)

(0.14, 0.23, 0.12, 0.32, ..., 0.9)

Representation of x

Representation of y

74

Search Space Design



Search Space Design
Search 
state.

Each state contains an input output pair (x, y)

x representation:  original features vector

y representation:  concatenation of T one-hot vectors 

1 2 1 0Example:

0 1 0

y = 
State 
representation

y representation: 0 1 00 0 1 1 0 0

co
nc

at
en

at
io

n

75

Continuous representation vs Discrete 
representation?Continious representation: richer input information

Discrete representation: (a) no need rounding threshold;
(b) easy to define hard constraints.



Search Space Design

Actio
n.

Successor 
Function.

We will apply k-Flipbit search space, an extension of standard Flipbit space. 

(yi z) : change yi to a new value z

Branching Factor:

Alternative valuesChoose k’ variables 
to make change

At most k
variables
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Search Space Design

Initial 
State.

Terminal 
State.
• Complete output space search have no hard criteria of terminal state. 
• A common condition to stop: reaching a locally optimal state or

reaching the maximum depth limit.

• Use random initial states to avoid the overfitting for a particular 
initial state.

• Use learned initial states, where we use a learned I.I.D. classifier to 
predict each output bit independently.

77

(e.g., Logistic Regressor)

H andC networks are usually task-specific.

Input: the input-output presentation pair
Output: a real-value score



Stage-wise Learning for H and C
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Heuristic Function Training

Cost Function Training

Goal: Uncover a set of candidate “high quality” outputs.  

Goal: Optimize over the best cost output among candidate set.  

Update:

Outputs in 
Search Tree

Defined by the best-loss 
output in generated set

Update:



Heuristic Function Learning

1. For each input, run search guided by true loss function (e.g., F1) 

Key steps:

x

F1

79



1. For each input, run search guided by true loss function (e.g., F1) 

2. Aggregate the uncovered states during search into a set R

Key steps:

x

F1

…R =

80

Heuristic Function Learning



1. For each input, run search guided by true loss function (e.g., F1) 

2. Aggregate the uncovered states during search into a set R

3. After reaching mini-batch examples, sent R into optimizer to do 
weight update, then clear R

Key steps:

x

F1

…R =

R Blackbox
Optimizer

f R

Then Next Iteration…
81

Heuristic Function Learning



Uncovered 
Outputs with 

labels Blackbox
Optimizer

Old Model

82

Blackbox Optimizer Reductions

Updated 
Model

What Objective?

Regression Reduction

Ranking Reduction



Regression-Based Reduction
Directly estimate the output loss.

For input x

……
Search Tree

Output loss
with y*

0.82

0.88

0.68

0.62

0.71
……Ag

gr
eg

at
ed

 
Ex

am
pl

es
 in

 
M

in
i-b

at
ch

Regression Learner

Cost function

Uncovered states
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Learning a ranker given ranking constraints.

For input x

……
Search Tree

Rank Learner

H or C function

Ranking Based Learner

Ranking Pair 
Constraints

Uncovered states

84



Ranking Based Learner

Ranking Pair 
Constraints

Sibling Constraints:

0.79 0.87 0.75 0.91

>
>
>

Output loss
with y*

85



Reduction Summary

Drawbacks of regression-based learning

o First, only the relative relations are needed. 

o Second, the internal relations of sibling states were not 
exploited.

86

Drawbacks of ranking-based learning

o Training is very computational expensive. 



Experimental Setup
Multi-label Classification

• We would evaluate on three datasets: Bibtex, Bookmarks and Yeast. 
• We will report F1 accuracy.

Our H or C network is derived from SPEN and DVN 87



Experimental Setup
Multi-label Classification

• Maximum number of epoch = 300. 
• Randomly split out 5% of the examples as validation set. 
• Learning rate, 0.005 for Yeast, and 0.1 for the other three. 
• We use the gradient descent optimizer to perform the weight update.
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Experimental Setup

Image Segmentation

Our cost function network is derived from DVN

Evaluate on Weizmann Horse Dataset. Label Set: {Background = 0, Horse = 1}
Use Intersection-of-Union (IoU) and Pixelwise-Accuracy to evaluate the result.

x

y

24x24

Input Conv
Layer 1

24x24  
x64

12x12x
128

6x6x
128

384
192

1

Conv
Layer 2

Conv
Layer 3

FC1 FC2

O
utput

89



Experimental Setup
Word Recognition

90

We use a synthetic word recognition dataset, constructed from 
Char74k by taking a list of 50 common five-letter English words.

Evaluate with character-wise Hamming accuracy. 

28x28 pixels

x
W o r l d

y

FCN

Unary:

2-layer FCN

Pairwise:

2-layer FCN

Score

(     ,W), … (W,o), (o,r), …

network



Results

91

Multi-Label Word Recog. Image Segm.

Algorithms Yeast Bibtex Bookmarks HW-Words Horse32x32

F-1 Char Acc. IoU

SPEN(E2E) 63.8 38.1 33.9 42.26 75.45

DVN 63.8 44.7 37.1 - 84

InfNet - 42.2 37.6 37.95 69.31

NLStruct - - - 44.37 81.86

Rand-Init 62.5 43.2 34.9 39.02 74.62

Learned-Init 62.6 44.7 37.8 45.14 82.55

Accuracy comparison with HC-Nets and the other SOTA 
approaches.



Results

92

Depth Gen.Acc. RealAcc.

Rand-Init Learned-
Init Rand-Init Learned-

Init
Yeast

2 0.531 0.674 0.462 0.579
5 0.755 0.816 0.553 0.623

10 0.816 0.831 0.564 0.627
14 0.854 0.841 0.598 0.629

Bibtex
2 0.698 0.722 0.312 0.375
3 0.722 0.748 0.384 0.421
4 0.759 0.801 0.385 0.425
5 0.762 0.811 0.385 0.426

Bookmarks
2 0.791 0.84 0.285 0.344
3 0.791 0.856 0.279 0.357
4 0.792 0.882 0.292 0.358

Depth Gen.Acc. RealAcc.

Rand-Init Learned-
Init Rand-Init Learned-

Init
Words Recognition 

1 0.22 0.41 0.15 0.28
5 0.56 0.67 0.32 0.35

10 0.74 0.88 0.38 0.41
15 0.83 0.91 0.37 0.404

Horse32x32
10 0.24 0.68 0.164 0.531
20 0.57 0.73 0.415 0.628
50 0.79 0.86 0.614 0.719
65 0.88 0.93 0.628 0.698

• Analysis of the varying the maximum search depth of generation stage. 
• We present the generation and selection accuracy with 2 initialization methods.

HL-Search



Future Work
1.  End-to-End MTSP with Deep Neural Networks.

2.  HC-Nets Learning for Variable Length Sequences.

3.  Joint Learning of H and C networks in HC-Nets.

93

Stage-wise training does not follow the end-to-end learning principle.

How to formulate the problem?  What tasks can be solved jointly? 
How to trade off the efficiency and model complexity?

How to form a fixed length representation for the non-fixed length 
input-output pair?

(Fixed Length 
Representation)Variable Length Input (e.g., sentence) ?

?
Stage-wise

Joint



Publications

Chao Ma, Janardhan Rao Doppa, Xiaoli Fern, Tom Dietterich, and Prasad Tadepalli. 
Proceedings of International Conference on Empirical Methods in Natural Language 
Processing (EMNLP), 2014.

• Prune-and-Score: Learning for Greedy Coreference Resolution. 

• Multi-Task Structured Prediction for Entity Analysis: Search-
based Learning Algorithms. 
Chao Ma, Janardhan Rao Doppa, Prasad Tadepalli, Hamed Shahbazh, and Xiaoli Fern. 
Journal of Machine Learning Research (JMLR), Proceedings Track, Vol 77, 16 pages, 
2017.
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• Randomized Greedy Search for Structured Prediction: Amortized 
Inference and Learning
Chao Ma, F A Rezaur Rahman Chowdhury, Aryan Deshwal, Md Rakibul Islam, 
Janardhan Rao Doppa, and Dan Roth. Proceedings of International Joint Conference 
on Artificial Intelligence (IJCAI), 2019.



Thank you!
Questions
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Structured Prediction with 
Deep Neural Networks

Supplementary Material



Papers

• Structured Prediction Energy Networks (ICML16)

• End-to-End Learning for Structured Prediction Energy Networks (ICML17)

• Deep Value Networks Learn to Evaluate and Iteratively Refine 
Structured Outputs (ICML17)

• Learning Approximate Inference Networks for Structured Prediction 
(ICRL18)

• Deep Structured Prediction with Nonlinear Output Transformations 
(NIPS18)

• Gradient-based Inference for Networks with Output Constraints 
(AAAI19)



Structured Prediction Energy Networks 
(SPEN) David Belanger, Andrew McCallum



Structured Prediction Energy Networks 
(SPEN) David Belanger, Andrew McCallum

A output of traditional NN for classification: 

y: concatenation of T one-hot vectors 

1
2
4

y = 

e.g., a network of MNIST classification

0 0 1 0 0 0 0 0 0 0
one-hot vectors 

A output representation in SPEN: 

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

T = 3



Structured Prediction Energy Networks 
(SPEN) David Belanger, Andrew McCallum

Manually:

Automatically:
Use the GradientDescent optimizer from the library to finish the 
task above.



Structured Prediction Energy Networks 
(SPEN) David Belanger, Andrew McCallum

Energy network learning in SPEN

Loss-augmented inference during training.

Relax to real value space. Should work on real value y.

Loss Function:

• SPEN relies on a good initial weight. It usually requires a 
pretraining with a light-weighted network



Structured Prediction Energy Networks 
(SPEN) David Belanger, Andrew McCallum

Potential problems of SPEN and gradient based inference

• The outputs during inference are not exploited.
• The gradient based inference requires a lot of parameters.
• Requires pretraining to initialize the network weights.



End-to-End SPEN David Belanger, Andrew McCallum

Three improvement over the original SPEN:
1. Improve unstable problem of gradient based inference.

2. Improve the gradient based inference to converge faster.

3. Examples of applying SPEN on different tasks.

• Set T to a small value. 

• Maintain the same optimization configuration, such as T, at both 
train and test time.

• Exploit all the outputs of each iterate to do the update
where the w could be                         in practice.



Inference Network for SPEN Lifu Tu, Kevin Gimpel

Learning of Inference network:

Learning of inference network and energy network:



Inference Network for SPEN Lifu Tu, Kevin Gimpel



Deep Value Networks (DVN)
Michael Gygli, Mohammad Norouzi, Anelia Angelova

Difference between DVN and SPEN:

o For SPEN, the absolute energy value is not important, but for DVN, 
the absolute value matters.

o DVN is optimizing continuous cross-entropy loss between v and v*, 
while SPEN is optimizing SSVN style hinge loss.



Deep Value Networks (DVN)
Potential problems of DVN:

1. DVN learns more that what is really needed. The absolute predicted 
value is unnecessary because during inference you will come across a very 
small proportion of outputs, rather the whole solution space. For some 
structured output, coming up a fixed length representation might be 
difficult.

3. In practice, the gradient based inference in DVN shows a 
very critical issue: it has no idea where to stop.

One has to carefully choose the parameters of inference: 
number of steps, and step_size, threshold for rounding, etc.

2. DVN learning performance is very sensitive to what outputs that are 
generated during training.



Deep Value Networks (DVN)
Potential problems of DVN:

2. In practice, the gradient based inference in DVN shows a very critical 
issue: it has no idea where to stop.

Results of different number-of-steps with DVN and gradient-base inference:

Results of performing discrete greedy search given learned DVN value functions:



Typical (Single-Task) Structured Prediction:

modelInput Output
f : X      Y y

f (x, y) = w · ϕ(x, y)

Single Task Structure Prediction

x y

Learning Inference

Feature 
Vector

y = argmax f (x, y)
y

^

Intractable in most cases

• Structural Perceptron
• Structural SVM

……

• Belief Propagation
• Integer Linear Programming (ILP)
• Beam Search

……

Candidate Methods: Candidate Methods:

This Work
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Search Based Inference for MTSP

y0

The advantage of search base SP:

Complete Output Search Space:

• Initial State:

• Terminal State:

• State:

• Action:

• Successor Function:

y A complete structural output

Change the value of i th variable from vj to vk

Random output or prediction output of unary classifier.

An output that reaches local optimal cost

a = (i, vj, vk)

A(y)

ŷ
With respect to the outputs in beam
and all successor outputs

e.g.: a document with 5 mentions,  yner =

e.g.: use a multi-class classifier to predict a label on each 
mention, and use these predictions as initial output

(ORG, PER, PER, LOC, VEL)

a = (2, PER, ORG)(ORG, PER, PER, LOC, VEL) (ORG, ORG, PER, LOC, VEL)Execute actione.g.: 

Set of all possible child states of y
Assume T = |y|, and d is domain size, then |A(y)| = (d – 1)T
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Advantage:

Limitation:

Branching factor is small. Greedy 
search can be very fast.
Explicit initial and terminal state.

� Can not correct the mistakes in 
the early steps.

� Requires an ordering.
� Value function (ground truth) 

supervision is only local oracle.  
� Some features may require the 

complete output.
112

Partial vs. Complete Output Space

Partial vs. Complete

Limitation:

� Requires initial states, and not 
explicit terminal state.

� Computational expensive on both 
time and space.

Advantage:

All the disadvantages of Partial 
space can be overcome.

Can be overcome with beam: 
i.e., LaSO, seq2seq-BSO 

LSTMs or GRUs with 
Attention


