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Structured Prediction:
x y
Input / \ Output
Model Inference
A
g, TP $ = argmax f (x, y)
y
Linear: f (x, y) =W ¢(x, y) Intractable in most cases
Feature
Vector

wv: f(x, y) =DNN (x, p)

Representation
Vector
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Search-Based Structured Prediction:

.v

Output

X
Input

Inference Model

f =argmax f(x,y) - Search Space Formulation
y « Search Algorithm

« Scoring function to guide the search
State-Space Search

Search Tree




Structured Prediction Frameworks USU
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We can classify most of the structured prediction approaches into
this four cell table.

Non-Deep Models Deep Models
Non- CRFs, SSVM
Search- = ’ DSM, SPEN, DVN
Based SPerceptron

Search-§ | SO, PruneScore, Seq2Seq-BSO
Based § HC-Search, MTSP HC-Nets

This Thesis



Partial vs. Complete Output Space 03“
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State Space Partial vs. Co_plete Output

a Space
K Conaranlations \p
I
Outputs: | / Outpth ‘.
y= y= cangrotulerians
y=C y= congrotulerians
y= CO y= congrotulerions

y= con y= congratulerions
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Contributions USU

1.
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Developed Prune-and-Score to improve the accuracy of
greedy policy based structured prediction with large action
spaces.

Studied three learning architectures for multi-task structured
prediction (MTSP) problems with different trade-offs between

speed and accuracy.

Proposed a HC-Nets framework that synergistically
combines the advantages of output space search based
structured prediction methods and deep models.



Prune-and-Score: Learning Greedy Policy nsu
for Structured Prediction

For some problem, even with greedy search, the branching factor is
still too large to make the correct decision.

o Can we prune the action space at each step to reduce
the branching factor and improve the accuracy?

o Can we formulate the imitation learning problem to an
offline rank learning problem?
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Coreference Resolution: The Problem oﬂgss!':'

Input: Xx

N

Coreference

Resolver
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Extracted Mentions

“[Barack Obama] nominated [Hillary Clinton] as his
[secretary of state] on Monday. [He] chose [her]
because [she] had foreign affair experience as a
former [First Lady].”

N

Output: y

Coreference Clustering

l Secretary of state l
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Coreference Resolution: Problem Setup oﬂgss!':'
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* (xNayN) <

o® ° ~ N
= . _ Learning Coreference
% @H Algorithm Resolver
I: S~ __—

Set of training examples ed Predictor

(input-output pairs)

Coreference
Resolver

/

Input X
“[Barack Obama] nominated [Hillary Clinton]
as his [secretary of state] on Monday. [He]
chose [her] because [she] had foreign affair
experience as a former [First Lady].” Secretary of state

Testing




Coreference Resolution: Greedy Search USU

Oregon State
[Ramallah ([West Bank])]10-15 ([AFP] ) —

[Eyewitnesses] reported that [Palestinians]

demonstrated today Sunday in the [West Bank]

against the [Sharm el-Sheikh] summit to be held in

[Egypt] tomorrow Monday. In [Ramallah], [around

500 people] took to [the town]’s streets chanting

slogans denouncing the summit ...
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Coreference Resolution: Greedy Search oﬂgss!!
[Ramallah (|[West Banklgh 0-15 ([AFP] ) — ,&

[Eyewitnesses] reported that [Palestinians]

demonstrated today Sunday in the [West Bank]

against the [Sharm el-Sheikh] summit to be held in v
[Egypt] tomorrow Monday. In [Ramallah], [around

500 people] took to [the town]’s streets chanting

slogans denouncing the summit ...

Current mention: [Ramallah (West Bank)]

(Partial) Co-reference result:

_____________________________________________
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Coreference Resolution: Greedy Search USU

Oregon State

UNIVER SITY

[Ramallah (/West Bank]) 11 0-15 ([AFP] ) —

[Eyewitnesses] reported that [Palestinians] @
demonstrated today Sunday in the [West Bank] a’
against the [Sharm el-Sheikh] summit to be held in :

[Egypt] tomorrow Monday. In [Ramallah], [around 9
500 people] took to [the town]’s streets chanting

slogans denouncing the summit ...

Current mention: [Ramallah (West Bank)]

(Partial) Co-reference result:

____________________________________________
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Coreference Resolution: Greedy Search USU

Oregon State

UNIVER SITY

[Ramallah ([West Bank])]10-15 ([AFP] ) —
[Eyewitnesses] rcported that [Palestinians]
demonstrated today Sunday in the [West Bank]
against the [Sharm el-Sheikh]| summit to be held in
[Egypt] tomorrow Monday. In [Ramallah], [around
500 people] took to [the town]’s streets chanting
slogans denouncing the summit ...

Current mention: [Sharm el-Sheikh]

(Partial) Co-reference result:

-------------------------------------- S
West BankJ

AFP
Eyewitnesses Palestinians
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Coreference Resolution: Greedy Search USU
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Successor Function USU
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[West Bank’10-15 [AFP )—[[Eyewitnesses} reported that
[Palestinians] dcmonstrated today Sunday in the| [West Bank])against the

Sharm el-Sheikh]|summit to be held in [Eqypt] tomorrow Monday. In
[Ramallah], [around 500 people] took to [the town]’s streets chanting
slogans denouncing the summit ...

Al e m e m e m

-~ - as —_—————— e TSN -~
7 - -=--" o= e /7 \
¢ v o as, - RN [
l . /

_ West Bank | | AFP . Palestinians Sharm eI-Shelkh]'—

West Bank Eyewitnesses
Bank) Cl es an C4 -
C> Cs
al a2 as v as as
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Successor Function Oregon State
At any state at depth ¢, we will have several candidate actions as
following: )
W e o _ NO
Y*G _____________ OP(,”
N‘?’ .- az’—___-&;—:::::::::zz\\ as’_)
\l/ vz a4v»”’\__‘1:\\:1 .‘/ 7 l‘
West Bank | | AFP el e lSharm eI-Shelkh]‘ -
West Bank Eyewitnesses
Cs mi
C2 C3 “ ﬁ
W Current mention

K Candidate entities /

State: partial coreference output

@

277, O

A 4 ’\ \\
a1,/a2/ ,a3\a4 ~ das
4 e v y %
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Al e mmmmm— e _
-7 Ciz,——"’_az::___:::::::;‘:i\\ a/s,_\
V/ V/ aa \\\\_l 1 7 /\
West Bank | | AFP [ Palestinians Sharm eI-Sheikh]‘ -
West Bank Eyewitnesses
Ca m7
C> Cs -
All candidate actions: A(s) = {a1,a2,as,as,as}
<L
Pruner F(prune) with parameter b Pruning action by keeping
top b (here b =2).
. pb( )
A'(s) ={as,as}
<L
Scorer F(score) Picking the best action.
<L
a
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Prune-and-Score for Greedy Search: lllustrate oﬂgss!':'
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Prune-and-Score for Greedy Search: lllustrate oﬂgss!':'
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S

14

ai az as \ as as Pruning
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Prune-and-Score for Greedy Search: lllustrate oﬂgss!':'
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S

14

ai az as \ as as Pruning
0.2 04 0.6 0.5 0.1
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Prune-and-Score for Greedy Search: lllustrate oﬂgss!':'

IIIIIIIIII

S

14

a X a2 X a3\ as X as  Pruning (b=2)
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Prune-and-Score for Greedy Search: lllustrate oﬂgss!':'
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S

14

as a4
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Prune-and-Score for Greedy Search: lllustrate oﬂgss!':'
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[ as \ aa ] Scoring
0.74 _ 0.59
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Prune-and-Score for Greedy Search: lllustrate oﬂgss!':'

[ !m a4 ] Scoring
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Prune-and-Score: Learning Approach oresmnset
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We optimize the overall loss of the Prune-and-Score
approach in a stage-wise manner.

Stage 1: Learn pruning function to optimize the pruning error.

A

]:p'r une ~ argininz prune €EFp Eprune *

Stage 2: Learn scoring function conditioned on the learned
pruning function.

A

conditioned on

) ) % ATO 1 . A
'FSCO" € alb llllllfscore EFS E.S'CO"’el.Fprune

29



Experimental Setup

Datasets

MUC 6: Message Understanding Conference (MUCB6, 1995)
Train/Dev/Test: 268/68/107 documents

ACE 2004: Automatic Content Extraction (NIST, 2004)
Train/Dev/Test: 195/30/30 documents

Evaluation Metrics
MUC F1, BCubed F1, CEAF F1.

Base Ranker Learner
LambdaMART (Burges, 2010), implemented in RankLib

Baseline Approaches

Only Scoring Function

UIUC: CPL’M (Changetal., 2013)

JHU: Easyfirst (Stoyanov and Eisner, 2012)
Stanford: Multi-Sieves (Raghunathan et al., 2010)

30
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Prune-and-Score vs. State-of-the-Art Oregon State

IIIIIIIIII

- ACE 2004 MUC 6

F-1score muc B-Cubed CEAF B-Cubed CEAF
Only Scoring  75.4 80.75 78.58 83.76 7711 64.91
JHU 80.1 81.8 - 88.2 77.5
UluC 78.29 82.2 79.26

31
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Summary of Prune-and-Score Oregonstate

h Coreference Resolution as a greedy search
process

h Key ldea: Scoring Function — Pruning Function +
Scoring Function

h Apply the offline rank learner for imitation learning

h Achieved results that are comparable than the
state-of-the-art

32



Multi-Task Structured Prediction (MTSP) USU
for Entity Analysis

What if you want to solve multiple corelated structured prediction
tasks with complete output space search?

We can concatenate the output of multiple tasks to form a
super-output. But search on such super-output would be
slow due to the huge branching factor.

We want to use complete output space so that we can
extract high-order features to exploit the interdependencies
between tasks

o Can we do complete output space search for multiple tasks
accurately and efficiently?

33



Example of NLP Pipelines ﬂsu
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4 \
/ . a a a a \
ki

-,

Input

I
I
I
I
I
Text :
I

|
I
|
|
Question o I
N |

S s s S S S S S B B B B B B B B B B B B B B B B B B B e e e

A composite NLP system for
Text Comprehension and Question Answering
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Entity Analysis Tasks USU
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The NLP tasks that are related to “entity mentions”

* Named Entity Recognition Automatically find

names of people, places,
and organizations in text
across many languages.

* Coreference Resolution - = = = = « =« =« o v o v o v annnn

4/\
“I voted for Nader because he was most

—
aligned with my values,” she said.

e EntityLinking = « = = « = = v o o v i i n s a e s e

“Paris is the capital of France”

i

wikipedia.org/wiki/Paris

o . . 35
wikipedia.org/wiki/France



Problem Setup USU

i=1 i=2 ||||||||||

He left [Columbia] in 1983 with a BA degree, ...
after graduating from [Columbia University], he
worked as a community organizer in Chicago...

36



Problem Setup USU

i=1 i=2 ||||||||||

He left [Columbia] in 1983 with a BA degree, ...
after graduating from {Columbia University]j, he
worked as a community organizer in Chicago...

Co.re
co-referent Iinb /Wnk

Coreference:
Vi— {1,2 l}

Left-linking Tree formulation for coreference resolution:

n; nmop ms m5 C‘_\1’1/16 O]’Vh

ycoref:( 1 ) 1 ’ 2 ’ 4 ’ 5 ’ 6 ’ 7)

coreference clustering

"
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Problem Setup USU

i=1 i=2 uuuuuuuuuu

He left [Columbia] in 1983 with a BA degree, ...
after graduating from [Columbia University!, he
worked as a community organizer in Chicago...

co-
(o] referent link

co-referent link
Coreference: Peoret = p , L)
yi=1{1,2...1}
y - ( ? ” cee )
yi = {ORG, PER, GPE, LOC,
FAC, VEL, WEA}

38



Problem Setup USU

. Oregon State
i=1 i=2

He left [Columbia] in 1983 with a BA degree, ...
after graduating from [Columbia University!, he
worked as a community organizer in Chicago...

Co-
o leferens link

co-referent link
Coreference: Yooref = p : y )
Vi— {1, 2 ... l}

Yoo = ( : : )

y; = {ORG, PER, GPE, LOC,

FAC, VEL, WEA}
; salinge https://en.w
Entity Linking: Plink = ( ikigedia.org ; https://en.wikipedia.o , )
/wiki/Colu _rg/wi.ki/Columbia_Un
yi={ mbia_Univ iversity
https://en.wikipedia.org/wiki/Columbia University, ersjty

https://en.wikipedia.org/wiki/Columbia_District,
https://en.wikipedia.org/wiki/Columbia, British Columbia,
https://en.wikipedia.org/wiki/Columbia_College, Columbia University,

. )



Multi-Task Structure Prediction USU
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Multi-Task Structured Prediction (MTSP):

Input X
U
& 13,
models [ ~ « -
=wy * $1(x, p)

Output [y | y:

‘7 ‘ 01 ‘0 ‘101

f3: X—> Y3
=w;3 93, ")

o
. L] -
..........

o How to exploit the interdependencies between tasks ?
40



Multi-Task Structure Prediction ﬂsu
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Introduce Inter-task Features:

Input

X
Intra-task Features @

ﬁ ¢(12)(x Vs J”) ﬁ ¢(2,3)(3f_,l”,y”ﬁ
P ~o

Output 1

-~
—
e am mm ==

da3(x,y,y”)

Inter-task Features



Inter-task
Features

Coref-

Coref-Link:

-Link:

05U

Oregon State

UNIVER SITY

He left [Columbia] in 1983 with a BA degree, ...
after graduating from [Columbia University], he
worked as a community organizer in Chicago...

co-referent link \

Columbia Columbia University

e.g.: Agreement of NER tags of two coreferent mentions

ORG == ORG

e.g.: Relation of KB entries of two coreferent mentions
University is-same-category  University
Mathematics is-sub-category = Mathematics education

.+ NER-tag and Cfteg}/ Bonus to the co-related pair

pair indicator

(ORG, University)
(ORG, Institute)
(PER, President) ... .



Pipeline Architecture USU
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Learning k (= 3) independent models, one after another;

Models Predict Output
Before Start:

Define a order: Task1 > Task 2 > Task 3

43
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Pipeline Architecture W%

Learning k (= 3) independent models, one after another;
Models

=
SSVM Learner

Predict Output

Before Start:

Task 1: r
Use feature
f¢1 (x’ y)

A

predict trai
H

44



Pipeline Architecture

Learning k (= 3) independent models, one after another;

Before Start:

Task 1:

Task 2:

predict trai
H

predict trai

i Use feature
f¢1 (x’ y)

A

s

[ Use feature

4)6 $2 (x%,)), Pa2) (6p,p°)

{

05U
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Models Predict Output

SSVM Learner
!

W1 predict

SSVM I.Ta;rner

------------

Wz || Wa,2) predict
2 | )2

45



Pipeline Architecture

Learning k (= 3) independent models, one after another;

Before Start:

Task 1:

Task 2:

Task 3:

predict trai
H

predict trai

i Use feature
f¢1 (x’ y)

A

'4

[ Use feature
3} (x,J’), ¢(1,2) )

$3(x, y) , ¢(1,3)(x,y,y ”)
D@z (6p’y”)

trai

t
{ Use feature
!
{

predict

Models

SSVM Learner

W1 predict
y1

------------

05U
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Predict Output

i Wa,2) F Predict
SSVM Learner
]
W3 | Waz3) | "e3) breg:
— Ict
N Y2 | 4ep3




Joint Architecture USU

IIIIIIIIII

Task1 & 2 & 3:

Use all features 1

¢1 (x’y)a ¢2 (x’y)a ¢3(x9y) ’

= SSVM Learner
y 9
b ¢(1,2) (x,y,y )9 ¢(1,3)(x,y,y ’) )
do3 ¥y T
w1 W» W3 Wa,2) Wa,3) Wa,3)

7 A R i e e T e I e B B R
'S 3
g -
Q- \ 4

Ji | yz | p3
N

lllllllllllllllllll

¢ = 1 (%)) Q P2(x,p) © 93(x,y) © d1,2(X,1,”) © D13 (X ),1”) © P2.3) (X,1°,p7)

Vector

concatenation 47



Cyclic Architecture USU
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Pipeline architecture

vTask 1-> Task 2 > Task 3.

o
L 4

L 4

4
L
... -“
" #»# § g g ®

Connect the tail of pipeline to the head?

48



Cyclic Architecture USU
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Unshared-Weight-Cyclic Training
Step 1: Define a order: Task 1 - Task 2 - Task 3
Step 2: Predict initial outputs:

49



Cyclic Architecture

Unshared-Weight-Cyclic Training
Step 1: Define a order: Task 1 - Task 2 - Task 3

Step 2: Predict initial outputs:

Use features
¢1 (x’y )9

P2 6Py,
da3) (51p”)

05U
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Cyclic Architecture
Unshared-Weight-Cyclic Training

Step 1: Define a order: Task 1 - Task 2 - Task 3

Step 2: Predict initial outputs:

Use features
¢1 (x’y )9

P2 6Py,
da3) (51p”)

05U
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Use features
¢2 (x’y )9

a2 (7)),
P23 (5Y7)
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Cyclic Architecture USU
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Unshared-Weight-Cyclic Training
Step 1: Define a order: Task 1 - Task 2 - Task 3
Step 2: Predict initial outputs:

Use features
Use features

¢2 (x)y )9
zl (x’.(V)s ,) ¢(1,2) (x’y’y ’)9
(1,2) x,y,y, ) Pz (6y°y7)
daz (,y”)
2%
_ 3=
Weights are N

independent /
\{

Use features X

¢3(x’y )9

da3HX)»”), )1

Pa3) (6p’y”) P2 Jacecc )2

52




Experimental Setup USU
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Datasets: ACE2005 TAC-KBP2015
ACE-to-Wiki
annotation
Train/Dev/Test Train/Dev/Test
338/144/117 132/36/167
KnOV\{Iedge Wikipedia Freebase
Base: (2015 dump) (2014 dump)
Evaluation: Coref. NER Linking = Within.Coref Cross.Coref NER & Linking
MUC 1 l 1 1
BCube —— CoNLL CoNLL CEAFm NERLC
CEAFe Hamming
H v Combined accuracy of
amming NER and Linking

All metrics are accuracies (larger is better)

53



Results Cyclic Architecture Performance USU

Oregon State

UNIVERSITY

ACEQS5 Test Set Performance TAC15 Test Set Performance

Train .
M corsoence SNMINERIRY . mm e T
time

MUC BCube CEAFe CoNLL Accu. Accu. Accu. Accu. Accu. CoNLL CEAFm time

Berkeley 81.41 74.7 7293 76.35 85.6 76.78 31min Rank-1st - 73.7 - 80 -
a. Results of Joint Archi.2cture without Pruning Berkeley 88.9 748 72.8 8298 80.8 6m29s
STSP  80.28 73.26 71.58 75.04 82.24 75.36 9min a. Results of Joint Arcnitecture without Prun.ng
JOIntW: 80.23 73.79 72.03 7535 8220 76.99 48min ST.SP 87.3 76.2 709 81.21 78.8 2m4ls
Rand Init Joint w.
Joint w Rand. Ini 87.1 71.17 6833 8131 784 7mil9s
Good in;t 82.18 76.57 74.00 77.58 85.71 78.77 34min Joint.w
b. Results of Joint Architecture with Pruning Good. Ini | TREERE R R
::,Z:;c 8110 75.79 7433 77.07 8563 7871 16min - b. Results of Joint A.chitecture with Prunirg
;gcore_ c‘:‘eti 89.54 76.84 7431 8299 814 4ml5s
corcitiog 8281 7577 74.96 77.85 87.18 80.28 37min :fof: _
c. Results of Cyc'ic Architecture sensitive 89135 77.68 97463 83.17 813 BOMas
wU:schrc?.c 8183 76.05 73.99 7729 8418 80.67 llmin . EEESHUSIRIE yclic Architecture
L > 89.57 77.68 746 82.08 80.5 3mb52s
Wt-Cyc

« Competitive accuracy, and much faster training

54



Summary of MTSP for Entity Linking USU
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1. Formulated the problem of multi-task structured prediction (MTSP)
in the context of entity analysis of NLP.

1. Developed a search-based learning framework: structured SVM for
training; beam search for inference.

1. Studied three architectures: pipeline, joint, and cyclic to trade-off
between accuracy and speed.

1. Evaluated two pruning approaches for the joint architecture

55



HC(C-Nets: A Framework for Search-based Deep []SU

Oregon State

Structured Prediction 77

Prior search-based structured prediction approaches use
hand-coded features.

We develop a general search-based framework that can
perform neural network function learning under the
discrete complete output space.

The decomposition of heuristic and cost functions makes the
representation more expressive and learning more modular.

56



HC(C-Nets for Structured Prediction USU

VVVVVVVVVV

Generation Stage

_ best-first
gnttlret beam search
utpu
Input Space Guided by Search Tree

Heuristic Function

Selection Stage

£ ranking A
£ y
N Guided by Predict
5 Search Tree . output
S Cost Function P
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Generation Stage: H-Search nsu

Search State ~ .
Input X Yo <- - Initial State

Starting point of search
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Generation Stage: H-Search ﬂsu

Search State ~ N
Input X Yo < lInitial State
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Generation Stage: H-Search usu
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Search State ~ .
Input X Yo T Initial State

Action q .-~

Successor Function
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Generation Stage: H-Search usu

VVVVVVVVVV

Search State ~ o
Input X Yo < Initial State

Action «
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Generation Stage: H-Search nsu

Search State ~ .
Input X ‘Yo < Initial State

Action a N\ ree— == Successor Function

------------

H (x,y) 0.81 0.82 0.75 0.93 0.79
Heuristic

Function
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Generation Stage: H-Search !!,Ss!:'

Search State ~ .
Input X Yo < Initial State

Action a N\ ree— == Successor Function

------------

H (x,y) 0.81 0.82 0.75 0.79
Heuristic \
Function

Best State in Beam
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Generation Stage: H-Search ,,qss!:'
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Input X Search State[/

<— |nitial State

Action «

Hx,y)
Heuristic '

Function

0.81
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Generation Stage: H-Search usu

VVVVVVVVVV

T

Search State

Input X | <— Initial State
Action «
H (x., y). 0.69 0.71 0.61 0.83
Heuristic

Function
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Generation Stage: H-Search nsu

Search State ~ .
Input X Yo < Initial State

Action

> Yy

H (x,y) _ 61 .
HeurIStIC e S N S S Cut-Off the beam
Function
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Generation Stage: H-Search nsu

Search State ~ .
Input X Yo < Initial State

Action

s RREE g ¥ NN A A Twy, ===
* P .

H (x, )
Heuristic

Function
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Generation Stage: H-Search 08“

Search State ~ .
Input X Yo < Initial State

Action a “ 0\ e~~~ == Successor Function

0.79

H (x,y)
Heuristic

Function
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Generation Stage: H-Search ﬂsu

Search State ~ .
Input X Yo < Initial State

Action a “ 0\ e~~~ == Successor Function

0.81 0.79

States in beam are all
becoming WORSE.
H (x, )

/ Local Optima
Heuristic E 0 r " = m " aom : " onoa" : E
Function : |
] 0.65 0.65 0.68 - 69
[ ‘Beam




Generation Stage: H-Search ﬂsu

Search State .
Input X Yo < Initial State

Action a = 7\ —~— ~ — === Successor Function

0.75
0.81 /\ 0.79
0.69 0.71 61

0.62 1 0.55  0.70 ]
Terminal Search
H (x,y)
0.65 0.65 0.6

Heuristic Function 3 70



Generation Stage: H-Search usu

VVVVVVVVVV

-~ =~
- // N o U
Input X -~ |y S S he
-~ - re
- ~ e
- ~ -~
\ /
\ /
\ /
y 0381 0.79
/
\‘ ,
S ¢
‘ &Q° \
\‘ R\ \
\
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Selection Stage USU
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Selection Stage []SU

Oregon State

Input X

HC-Search

Final
Prediction:



Search Space Design USIJ

IIIIIIIIII

(0.14,0.23,0.12, 0.32, ..., 0.9) nnnnnnnnn
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Search Space Design USU

IIIIIIIIII

Search Each state contains an input output pair (x, »)

state.
{x representation: original features vector

y representation: concatenation of T vectors

llllllllllllllllllllllllllllllllllllll

|, State
representation -

.y representation:

concatenation

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Continuous representation vs Discrete

ion?
reQ!'grﬁ?n%ais“?e%r’esentation: richer input information
Discrete representation: (a) no need rounding threshold;

(b) easy to define hard constraints. 75



Search Space Design USIJ

IIIIIIIIII

We will apply k-Flipbit search space, an extension of standard Flipbit space.

Actio (vi— z) : change yi to a new value

n.
originatowsut: [1]0]1]0]1]0]0[1][1]1]0]1
Action: a={ 3%/ 1 |—{0 ), (7% 0 |—| 1), (10% 1 |—|0]) }
vewoupu: [11010]0]1]0[4]1]1]0]0]1
Successor
Function.

k

T
Branching Factor: Z (k’) X (n—-1)

’////ﬁfl \\
At most k Choose k’ variables  Alternative values
variables to make change

76



Search Space Design BSU

IIIIIIIIII

Initial

State.

« Use random initial states to avoid the overfitting for a particular
initial state.

predict each output bit independently.  (e.g., Logistic Regressor)

Terminal
State.

« Complete output space search have no hard criteria of terminal state.
« A common condition to stop: reaching a locally optimal state or
reaching the maximum depth limit.

H and C networks are usually task-specific.

Input: the input-output presentation pair
Output: a real-value score

fiXXY > R*
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Stage-wise Learning for H and C []SU

IIIIIIIIII

Heuristic Function Training

Goal: Uncover a set of candidate “high quality” outputs.

L
L]
L]
[ ]

Beam-Search(H (x, y; 8y)) .

S < Outputs in
Search Tree

Update: ("S- L.
new Oy<+~— maxI m1n Z l(x,y,y ) Defmed by the best-loss
output in generated set

Cost Function Training

Goal: Optimize over the best cost output among candidate set.

3
.
-"
N\

Yy «— min C(x,y)

Update: new 0, «—— Hglinz Error(x,y,y")
C
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Heuristic Function Learning []SU
Keysteps: 0

1. For each input, run search guided by true loss function (e.g., F1)

79



Heuristic Function Learning []SU
Keysteps: 0

1. For each input, run search guided by true loss function (e.g., F1)

2. Aggregate the uncovered states during search into a set R

Yo Yo Yo
7R N\~ = /\\.\
— /\. s = /\. e - =
n Y2 ¥z Ya n Y2 y3 Ya N Y2 ys Ya
~ < /r\\‘
R - X1 £ e X2 e see X10 5 ® @
- ) @) O ) @) O ) @) O
—7 \\ = \\ — / \\
e \ = \ e \
w) ) o w) ) o w) ) o
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Heuristic Function Learning OSU
Keysteps: 0

1. For each input, run search guided by true loss function (e.g., F1)

2. Aggregate the uncovered states during search into a set R

Yo Yo /‘;
N N N
2N =N « Fe \

»n @ @& & »n @ @& & D D U €
X = X 0 xlO I
-— - - - -
R - 1 s ¥e) (» 2 s ¥e) (» eee & O 9
=0\ 7\ 7\
R = \ o

3. After reaching mini-batch examples, sent R into optimizer to do
weight update, then clear R

R Black f R — { @ ]

81
Then Next Iteration...



Blackbox Optimizer Reductions

Uncovered
Outputs with
labels

Old Model

“A_<

.

Regression Reduction

L Ranking Reduction

4 )
Black
g J
)
What Objective?

0SU

IIIIIIIIII

Updated
Model

82



Regression-Based Reduction Output loss USU

with y*  OregonState

IIIIIIIIII

Directly estimate the output loss.

\
For input X 0.82
Uncovered states
0.88
P 4 < 6 0.68 >
< £ - 6 0.62
295
gl c 2 %
@
w EE
<L S _

Search Tree

Cost function
83



Ranking Based Learner USIJ

IIIIIIIIII

Learning a ranker given ranking constraints.

For input X

@ Uncovered states

Ranking Pair
> Constraints

y

H or C function

Search Tree

84



Ranking Based Learner

Sibling Constraints:

n

0.79

Yo

) @ ¢

0.87 0.75

n >
% > 0)
w > ()

Ranking Pair
Constraints

0SU

IIIIIIIIII

Output loss

Y4 / with y*
0.91
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Reduction Summary []SU

IIIIIIIIII

Drawbacks of regression-based learning

o First, only the relative relations are needed.

o Second, the internal relations of sibling states were not
exploited.

Drawbacks of ranking-based learning

o Training is very computational expensive.
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Experimental Setup []SU

IIIIIIIIII

Multi-label Classification

 \We would evaluate on three datasets: Bibtex, Bookmarks and Yeast.
« We will report F1 accuracy.

Predict Cost

@)
- ,-'l/ \-
Compatibility LO_}

' =\ .
I O ! Label Correlations

=
_________________ I________________\

Hidden Layer 2

Label Input

X y
(x, )

Our H or C network is derived from SPEN and DVN 87



Experimental Setup 08”

IIIIIIIIII

Multi-label Classification

 Maximum number of epoch = 300.

* Randomly split out 5% of the examples as validation set.

* Learning rate, 0.005 for Yeast, and 0.1 for the other three.

 We use the gradient descent optimizer to perform the weight update.
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Experimental Setup

Image Segmentation

0SU

IIIIIIIIII

Evaluate on Weizmann Horse Dataset. Label Set: {Background = 0, Horse = 1}
Use Intersection-of-Union (loU) and Pixelwise-Accuracy to evaluate the result.

e ]

I .

X 3 ) N
LN - x, X,
R \4 |
<N A
24x24 12x12x 6x6x
24x24 x4 128 128

Input Conv Conv Conv

Layer 1 Layer2 Layer3

Our cost function network is derived from DVN

384

FC1

192

FC2

indinp O -
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Experimental Setup USU

IIIIIIIIII

Word Recognition

We use a synthetic word recognition dataset, constructed from
Char74k by taking a list of 50 common five-letter English words.

X
‘{‘ i ‘—F‘ ,‘_: ":v
- L

28x28 pixels

---------------------------------------------------------------

[ 2-layer FCN ] [ 2-layer FCN ]

Score network .°

---------------------------------------------------------------

Evaluate with character-wise Hamming accuracy.



Results USU

IIIIIIIIII

Accuracy comparison with HC-Nets and the other SOTA
approaches.

_ Multi-Label Word Recog. |Image Segm.

Algorithms Yeast Bibtex  Bookmarks HW-Words Horse32x32

F-1 Char Acc. [oU

SPEN(E2E) 63.8 38.1 33.9 42.26 75.45
DVN 63.8 44.7 37.1 - 84

InfNet - 42.2 37.6 37.95 69.31

NLStruct - - - 44.37 81.86

Rand-Init 62.5 43.2 34.9 39.02 74.62

Learned-Init 62.6 44.7 37.8 45.14 82.55
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Resu |tS HL-Search USU

IIIIIIIIII

* Analysis of the varying the maximufn search depth of generation stage.
« We present the generation and selection accuracy with 2 initialization methods.

Rand-Init Learr'ied- Rand-Init Learr.red- Rand-Init Lear|.1ed- Rand-Init Learrored-

Init Init Init Init
Yeast Words Recognition

2 0.531 0.674 0.462 0.579 1 0.22 0.41 0.15 0.28

5 0.755 0.816 0.553 0.623 5 0.56 0.67 0.32 0.35

10 0.816 0.831 0.564 0.627 10 0.74 0.88 0.38 0.41

14 0.854 0.841 0.598 0.629 15 0.83 0.91 0.37 0.404
Bibtex Horse32x32

2 0.698 0.722 0.312 0.375 10 0.24 0.68 0.164 0.531

3 0.722 0.748 0.384 0.421 20 0.57 0.73 0.415 0.628

4 0.759 0.801 0.385 0.425 50 0.79 0.86 0.614 0.719

5 0.762 0.811 0.385 0.426 65 0.88 0.93 0.628 0.698

Bookmarks
2 0.791 0.84 0.285 0.344
3 0.791 0.856 0.279 0.357

4 0.792 0.882 0.292 0.358



Future Work []SU

IIIIIIIIII

1. End-to-End MTSP with Deep Neural Networks.

How to formulate the problem? What tasks can be solved jointly?
How to trade off the efficiency and model complexity?

2. HC-Nets Learning for Variable Length Sequences.

How to form a fixed length representation for the non-fixed length
input-output pair? ?

[ Variable Length Input (e.g., sentence) ] e

3. Joint Learning of H and C networks in HC-Nets.

Stage-wise training does not follow the end-to-end learning principle.

s ® E g
S . " "o
v .
. . . .

. |
Errory Error.,(H) |

.
Y aoan

Stage-wise
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Publications []SU

IIIIIIIIII

* Prune-and-Score: Learning for Greedy Coreference Resolution.

Chao Ma, Janardhan Rao Doppa, Xiaoli Fern, Tom Dietterich, and Prasad Tadepalli.
Proceedings of International Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014.

* Multi-Task Structured Prediction for Entity Analysis: Search-
based Learning Algorithms.

Chao Ma, Janardhan Rao Doppa, Prasad Tadepalli, Hamed Shahbazh, and Xiaoli Fern.
Journal of Machine Learning Research (JMLR), Proceedings Track, Vol 77, 16 pages,
2017.

 Randomized Greedy Search for Structured Prediction: Amortized
Inference and Learning

Chao Ma, F A Rezaur Rahman Chowdhury, Aryan Deshwal, Md Rakibul Islam,
Janardhan Rao Doppa, and Dan Roth. Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI), 2019.
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Thank youl!

Questions
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Supplementary Material

Structured Prediction with
Deep Neural Networks

IIIIIIIIII



Papers USU
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« Structured Prediction Energy Networks (ICML16)

« End-to-End Learning for Structured Prediction Energy Networks (ICML17)

« Learning Approximate Inference Networks for Structured Prediction
(ICRL18)

« Deep Structured Prediction with Nonlinear Output Transformations
(NIPS18)

« Deep Value Networks Learn to Evaluate and lteratively Refine
Structured Outputs (ICML17)

« Gradient-based Inference for Networks with Output Constraints
(AAAI19)



Structured Prediction Energy Networks DSU

IIIIIIIIII

(SPEN) David Belanger, Andrew McCallum

1. Formulating the output as a binary vectory € {0, 1}*7, then relax y to
real value space so that y € [0, 1] T.

2. Define an energy network E(x, y) to scoring a given pair of input x and
outputy.

3. To doinference for a giveninput x, the best y can be found by compute
argmin_y E(x,y). argmin is done by doing gradient descent in the relax

output space.
4. Learning of E optimizes a SSVM style loss, with inner-loop loss-

augmented inference.



Structured Prediction Energy Networks 1N

IIIIIIIIII

(SPEN) David Belanger, Andrew McCallum

Formulating the output as a binary vectory € {0, 1}*7, then relax y to real
value space so that y € [0, 1] T.

A output of traditional NN for classification:

e vectors
e.g., a network of MNIST classification
A output representation in SPEN: T=3
y= |2

y: concatenation of T vectors



Structured Prediction Energy Networks BSU

IIIIIIIIII

(SPEN) David Belanger, Andrew McCallum

y = argmin,, E(x,y). argminis done by doing gradient descent in the relax y space.

Manually:

Define a step_sizen and number-of-steps T, and an initial output y,

At each step, update output by doing following:
d s

d
YT =Yyo0 — 'Z::l ’]IEEx(yI)-
Automatically:

Use the GradientDescent optimizer from the library to finish the
task above.

Note: After got the real value y, a threshold value should be decided
through validation set to round it back to discrete space.



Structured Prediction Energy Networks 1N

IIIIIIIIII

(SPEN) David Belanger, Andrew McCallum

Energy network learning in SPEN

Loss-augmented inference during training.

Yp = arg;nin (—A(yi,y) + Ez, (y)) -
/

Should work on real value y.
Relax to real value space.

* SPEN relies on a good initial weight. It usually requires a
pretraining with a light-weighted network



Structured Prediction Energy Networks 1N

IIIIIIIIII

(SPEN) David Belanger, Andrew McCallum

Potential problems of SPEN and gradient based inference

* The outputs during inference are not exploited.
 The gradient based inference requires a lot of parameters.
* Requires pretraining to initialize the network weights.



End'tO'End SPEN David Belanger, Andrew Mccgaégu

IIIIIIII

Three improvement over the original SPEN:

1. Improve unstable problem of gradient based inference.

Instead, we have found it useful to avoid constrained op-
timization entirely, by optimizing un-normalized logits 1,,
with y; = SoftMax(1;):

li+1 =1 — i« VEX (SoftMax(1;)) . (8)

2. Improve the gradient based inference to converge faster.

* Maintain the same optimization configuration, such as T, at both
train and test time.

[M]=

1 .
» Exploit all the outputs of each iterate to do the update L = T wil(ye,y"),

2y — 1 . . t=1
where the w could be ¥t = 751 in practice.

e SetT to asmall value.

3. Examples of applying SPEN on different tasks.



Inference Network for SPEN Lifu Tu, Kevin Grusu

IIIIIIIIII

Instead of gradient based inference, another method to compute

argmin E (x, y) for SPEN: learning another inference network A(x) that can

y
directly generate an output y.

Ay (x) =~ argmin FEg(x,vy)
YyEYr(x)

Learning of Inference network:

¥ + argmin Z Eo(x,Ay(x))
v xeX

Learning of inference network and energy network:

ngn max Z [A(Ezé_xfp (:B,) y;) — Eo(xi, As(xi)) + Eo(xi, y;)] .
(xi,y;)€ED

Loss-augmented inference network A4 can not be directly used
as Ay in testing. Needs additional training by initializing A¢ with

Ay weightonce E is fixed. \\




Inference Network for SPEN Lifu Tu, Kevin GillSU

Oregon State

IIIIIIIIII

Form of inference network A(x)
The architecture of Ay will depend on the task.

* For MLC, they use a feed-forward network for Ay with a vector output,
treating each dimension as the prediction for a single label.

* For sequence labeling, they use an RNN that returns a vector at each
position of x. We interpret this vector as a probability distribution over
output labels at that position.

There is an analogy here to the discriminatorin GANs. The energy
function is updated so as to enable it to distinguish “fake” outputs
produced by Ay from real outputs y_i



Deep Value Networks (DVN) OSU
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Michael Gygli, Mohammad Norouzi, Anelia Angelova

* Learninga value network v(x, y) to scoring input output pair such that
v can imitate the functionof v* = 1- I(x,y,y").

* Inferenceis done with the similar approach as SPEN: output space
gradient descent.

* The learning of v contains two critical step: Generating output for each
input, and optimize the cross-entropy loss between v and v* given all
(x, y) pairs in each mini-batch.

Difference between DVN and SPEN:

o For SPEN, the absolute energy value is not important, but for DVN,
the absolute value matters.

o DVN is optimizing continuous cross-entropy loss between v and v*,
while SPEN is optimizing SSVN style hinge loss.



Deep Value Networks (DVN) OSU

IIIIIIIIII

Potential problems of DVN:

1. DVN learns more that what is really needed. The absolute predicted
value is unnecessary because during inference you will come across a very
small proportion of outputs, rather the whole solution space. For some
structured output, coming up a fixed length representation might be
difficult.

2. DVN learning performance is very sensitive to what outputs that are
generated during training.

3. In practice, the gradient based inference in DVN shows a
very critical issue: it has no idea where to stop.

One has to carefully choose the parameters of inference:
number of steps, and step_size, threshold for rounding, etc.



0SU

Oregon State

UNIVERSITY

Deep Value Networks (DVN)

Potential problems of DVN:

2. In practice, the gradient based inference in DVN shows a very critical
issue: it has no idea where to stop.

Results of different number-of-steps with DVN and gradient-base inference:

Train with Test with Yeast | Bibtex | Bookmarks
Gradient-20-steps | Gradient-20-steps | 63.9 44.5 36.6
Gradient-20-steps | Gradient-10-steps | 47.8 34.7 31.2
Gradient-20-steps | Gradient-30-steps | 60.2 41.3 312
Gradient-20-steps | Gradient-40-steps | 57.6 379 27.8
Gradient-10-steps | Gradient-10-steps | 45.5 37.8 -
Gradient-30-steps | Gradient-30-steps | 60.6 42.8 -
Gradient-40-steps | Gradient-40-steps | 57.9 B2 -

Table 2: Gradient-based inference testing performances.

Results of performing discrete greedy search given learned DVN value functions:

Algs. Yecast | Bibtex | Bookmarks
Search-2-steps | 56.3 41.5 349
Search-3-steps | 59.6 395 35.1
Search-4-steps | 61.1 35.7 30.4
Search-5-steps | 63.4 323 27.6
Search-6-steps | 62.2 29.1 23.1

Table 3: Multi-label classification F1 performance.



Single Task Structure Prediction USU
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Typical (Single-Task) Structured Prediction:

o R

Input Output
model P
Learnin)g/ %ference
AN
f(x) y) — W °¢(x) y) y—argmaxf(x, y)
Feature Y
Vector Intractable in most cases
'+ Structural Perceptron « Belief Propagation
* Structuralsvm - * _Integer Linear Programming (ILP)
°°°°° S hie Work . Beam Search
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Search Based Inference for MTSP !]gssu

IIIIIIIIII

Complete Output Search Space:

State: ) A complete structural output
e.g.: a document with 5 mentions, yner = (ORG, PER, PER, LOC, VEL)

Action: @ = (I, Vj, Vi)  Change the value of i th variable from v; to v,

| a = (2, PER, ORG)
eg: | (ORG[PER/PER, LOC, VEL) —+— ===t ===l (ORG,(ORG| PER, LOC, VEL) |

Successor Function: A(y) Set of all possible child states of y
Assume T=y|, and d is domain size, then |A(y)|=(d - )T

Initial State: J’9  Random output or prediction output of unary classifier.
e.g.: use a multi-class classifier to predict a label on each
mention, and use these predictions as initial output

: A
Terminal State: ) An output that reaches local optimal cost

With respect to the outputs in blei'lam
and all successor outputs



Partial vs. Complete Output Space USU

VVVVVVVVVV

Partial VS. Complete

Advantage: Advantage:

All the disadvantages of Partial

Branching factor is small. Greedy
space can be overcome.

search can be very fast.
Explicit initial and terminal state.

Limitation: Limitation:

Can be overcome with beam:
l.e., LaSO, seq2seq-BSO

Requires an ordering.
Value function (ground truth)
supervision is only local oracle.

LSTMs or GRUs with
Attention 112

Requires initial states, and not
explicit terminal state.

Computational expensive on both
time and space.



